bài 14: lớp 6A có 54 hs, lớp 6B có 48 hs. trong giờ thể dục, các lớp xếp thành các hàng dọc như nhau mà lớp ko có hàng lẻ nào có hs lẻ hàng. Tính số hàng dọc có thể xếp dc, biết số hàng dọc của mỗi hàng dọc của mỗi lớp nhiều hơn 4 hàng và ko quá 7 hàn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.Vì cả 3 lớp xếp cùng số hàng như nhau nên số học sinh của mỗi lớp phải chia hết cho số hàng
gọi a là số hàng 3 lớp có thể xếp được
Ta có: a thuộc ƯC(54, 42, 48)
Vì số hàng dọc cần tìm là nhiều nhất nên a thuộc ƯCLN(54, 48, 42) = 2.3 = 6
Vậy số hàng dọc nhiều nhất có thể xếp là 6 hàng
Ta có:
Do 46:a=b(dư 1)
Nên (46-1).k:3
=>Lớp 6A xếp thành 3 hàng
Thử lại:
Nếu lớp 6A xếp thành 3 hàng dư 1 thì lớp 6B có:
44:3=14(dư 2) (T/m)
=> Mỗi lớp chia thành 3 hàng
Số hàng dọc nhiều nhất xếp được của 3 lớp gọi số hàng đó là a theo đầu bài a là ƯCLN của 32 , 48 , 56
Ta có :
32 = 25
48 = 24 . 3
56 = 23 .7
=> ƯCLN ( 32 ,48 , 56 ) = 23 = 8
=> a = 8 Vậy số hàng dọc 3 lớp xếp bằng nhau mà ko bị lẻ sao cho số hàng dọc nhiều nhất là 8 hàng
Số hàng ngang ở lớp 6A xếp được là : 32 : 8 = 4 (hàng)
Số hàng ngang lớp 6B xếp được là: 48 : 8 = 6 ( hàng )
Số hàng ngang lớp 6C xếp được là: 56 : 8 = 7 ( hàng )
Đ/s: ....
Số hàng dọc nhiều nhất có thể xếp đc là 6 hàng.
Khi đó:
Lớp 6A mỗi hàng có 9 bạn.
Lớp 6B mỗi hàng có 7 bạn.
Lớp 6C mỗi hàng có 8 bạn.
Chúc bn iu học tốt!
\(54=3^3\cdot2;48=2^4\cdot3\)
=>\(ƯCLN\left(54;48\right)=2\cdot3=6\)
Để chia 54 học sinh lớp 6A và 48 học sinh lớp 6B thành các hàng dọc như nhau mà không lớp nào bị lẻ học sinh thì số hàng dọc xếp được phải là ước chung của 54 và 48
mà số hàng dọc nhiều hơn 4 hàng và không quá 7 hàng
nên số hàng dọclà 6 hàng
\(54=3^3\cdot2;48=2^4\cdot3\)
=>\(ƯCLN\left(54;48\right)=2\cdot3=6\)
Để chia 54 học sinh lớp 6A và 48 học sinh lớp 6B thành các hàng dọc như nhau mà không lớp nào bị lẻ học sinh thì số hàng dọc xếp được phải là ước chung của 54 và 48
mà số hàng dọc nhiều hơn 4 hàng và không quá 7 hàng
nên số hàng dọclà 6 hàng