Cho 3 số a , b , c thỏa mãn a × b × c =105 và b × c + b + 1 khác 0
S =\(\frac{105}{a×b×c+ab+a}+\frac{b}{b×c+b+1}+\frac{a}{a×b+a+105}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì abc=105 nên thay 105 bằng abc ta được:
\(s=\frac{abc}{a\left(bc+b+1\right)}\)+\(\frac{b}{bc+b+1}\)+\(\frac{a}{ab+a+abc}\)
\(s=\frac{bc}{bc+b+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{1}{b+1+bc}\)=\(\frac{bc+b+1}{bc+b+1}\)=1
Cho mình 1 l i k e nha..............
\(s=\frac{105}{105+ab+a}+\frac{ab}{a.\left(bc+b+1\right)}+\frac{a}{ab+a+105}=\frac{105}{105+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{ab+a+105}\)
\(s=\frac{105}{105+ab+a}+\frac{ab}{105+ab+a}+\frac{a}{ab+a+105}=\frac{105+ab+a}{105+ab+a}=1\)
Thay 105 = abc vào biểu thức S ta được:
\(S=\frac{abc}{a.\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=\frac{bc+b+1}{bc+b+1}=1\)
Vậy S=1
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(S=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(S=\frac{bc+b+1}{bc+b+1}=1\)
Thay 105 = abc
\(M=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}.\)a không thể = 0 vì tích abc = 105
\(M=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{b+1+bc}=\frac{bc+b+1}{bc+b+1}=1.\)vì bc+b+1 khác 0.
Nếu bạn thử thế số vào luôn thì sẽ dể làm hơn đó
vì ta có a.b.c= 105 nên a,b,c khác 0
ta có a.b.c=3.5.7=105
=> ta có a=3, b=5, c=7. Sau đó bạn thế số vào nhé
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\left(abc=105\right)\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\) \(\left(abc=105\right)\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)