K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

Vi  |x^2-5| va |5-x^2| luon lon hon hoac bang 0

\(\Leftrightarrow\)|x^2-5| = 0  va |5-x^2| = 0

\(\Leftrightarrow\)x^2- 5 = 0 va 5- x^2 = 0

\(\Leftrightarrow\)x^2 = 5

\(\Leftrightarrow\)x = 5 ; x = -5

11 tháng 8 2017

x bàng 2,5 nhé bạn

1 tháng 3 2017

Ta có : |x - 3|2 luôn luôn lớn hơn hoặc bằng 0 với mọi x 

           |x - 3| luôn luôn lớn hơn hoặc bằng 0 với mọi x 

Mà |x - 3|2 + |x - 3| = 0

Suy ra : \(\hept{\begin{cases}\left|x-3\right|^2=0\\\left|x-3\right|=0\end{cases}}\) \(\Rightarrow\left|x-3\right|=0\)

\(\Rightarrow x-3=0\Rightarrow x=3\)

1 tháng 3 2017

chuyển vế đi=> X=3 hoặc X=2

Tập hợp có 2 phần tử 3;2

NV
25 tháng 10 2021

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

NV
25 tháng 10 2021

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

19 tháng 8 2016

Ta có : \(\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+2=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\end{array}\right.\)

Vậy \(x\in\left\{1;-2\right\}\)

Đây giống bài lớp 6 hơn

19 tháng 8 2016

(x-1)(x+2)=0

=>x-1=0 hoặc x+2=0

=>x=1 hoặc x=-2

2 tháng 8 2015

ta có \(\left(x+\frac{5}{4}\right).\left(x-\frac{9}{7}\right)<0\)

suy ra hai số này là trái dấu vậy một số là dương và mootj số là âm 

mà \(\left(x+\frac{5}{4}\right)>\left(x-\frac{9}{7}\right)\)

suy ra \(\left(x+\frac{5}{4}\right)\)là số dương còn \(\left(x-\frac{9}{7}\right)\)là số âm

x+5/4>0suy ra x>0-5/4 suy ra x>-5/4

x-9/7<0 suy ra x<9/7+0 suy ra x<9/7

-5/4<x<9/7

 

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0