K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`#3107.101107`

Thay `x = -2/3` vào biểu thức:

`6*(-2/3)^3 - 3*(-2/3)^2 + 2 * |-2/3| + 4`

`= 6 * (-8/27) - 3*4/9 + 2 * 2/3 + 4`

`= -16/9 - 4/3 + 4/3 + 4`

`= -16/9 + 4`

`= 20/9`

Vậy, giá trị của biểu thức là `20/9` tại `x = -2/3.` 

27 tháng 7 2020

1. A = 6x^3 - 3x^2 + 2.|x| + 4 với x = -23

Thay x = -23 vào biểu thức trên, ta có:

A = 6.(-23)^3 - 3.(-23)^2 + 2.|-23| + 4

A = -74539

2. B = 2.|x| - 3.|y| với x = 12; y = -3

Thay x = 12; y = -3 vào biểu thức trên, ta có:

B = 2.|12| - 3.|-3|

B = 15

3. |2 + 3x| = |4x - 3|

ta có: 2 + 3x = \(\hept{\begin{cases}4x-3\Leftrightarrow4x-3\ge0\Leftrightarrow x\ge\frac{3}{4}\\-\left(4x-3\right)\Leftrightarrow4x-3< 0\Leftrightarrow x< \frac{3}{4}\end{cases}}\)

Nếu x >= 3/4, ta có phương trình:

2 + 3x = 4x - 3

<=> 3x - 4x = -3 - 2

<=> -x = 5

<=> x = 5 (TM)

Nếu x < 3/4, ta có phương trình:

 2 + 3x = -(4x - 3)

<=> 2 + 3x = -4x + 3

<=> 3x + 4x = 3 - 2

<=> 7x = 1

<=> x = 1/7 (TM) 

Vậy: tập nghiệm của phương trình là: S = {5; 1/7}

15 tháng 1 2019

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

Bạn xem đã viết đúng đề chưa vậy?

AH
Akai Haruma
Giáo viên
17 tháng 4 2023

Lời giải:

a.

PT $\Leftrightarrow 3x^2+\frac{x}{2}-3x^2+3x+2=0$
$\Leftrightarrow \frac{7}{2}x+2=0$
$\Leftrightarrow \frac{7}{2}x=-2$
$\Leftrightarrow x=-2: \frac{7}{2}=\frac{-4}{7}$
b.

PT $\Leftrightarrow 5x^2-3-5x^2-6x=0$

$\Leftrightarrow -3-6x=0$

$\Leftrightarrow 6x=-3$

$\Leftrightarrow x=\frac{-3}{6}=\frac{-1}{2}$

24 tháng 10 2021

c: \(\dfrac{x^4-x-14}{x-2}\)

\(=\dfrac{x^4-2x^3+2x^3-4x^2+4x^2-8x+7x-14}{x-2}\)

\(=x^3+2x^2+4x+7\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

\(=\dfrac{2x\left(3x^2+2\right)+3x^2+2}{3x^2+2}=2x+1\)

26 tháng 10 2021

\(a,=y\left(y-2\right)\\ b,=3x\left(x^2-2x+1\right)=3x\left(x-1\right)^2\\ c,=\left(y-1\right)\left(27x^2+9x^3\right)=9x^2\left(x+3\right)\left(y-1\right)\\ d,=y\left(y^2-2y+1\right)=y\left(y-1\right)^2\\ e,=x\left(x^2+6x+9\right)=x\left(x+3\right)^2\\ f,=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\\ g,=\left(2-x\right)\left(x+1\right)\\ h,=\left(x-1\right)\left(3x-6\right)=3\left(x-1\right)\left(x-2\right)\)

26 tháng 10 2021

a: =y(y-2)

b: \(=3x^2\left(x^2-2x+1\right)=3x^2\left(x-1\right)^2\)

d: \(=y\left(y^2-2y+1\right)=y\left(y-1\right)^2\)