chung to A bang 1/41+1/42+1/43+...+1/80>7/12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/41 + 1/42 +....+1/80
Chia tổng trên thành 2 nhóm mỗi nhóm 20 số hạng. Ta được:
1/41 + 1/42+ .....+ 1/60 > 1/60.20 (mỗi số hạng trong tổng đều >1/60 và 1/60 = 1/60)
1/61 + 1/62 +......+ 1/80 > 1/80.20 (mỗi số hạng trong tổng đều > 1/80 và 1/80 = 1/80)
=> 1/41 + 1/42 +.....+1/61 > 1/3
1/61 + 1/62 +....+1/80 > 1/4
=> 1/41 +1/42 +...+1/80 < 1/3 + 1/4
=> 1/41 + 1/42 +....+ 1/80 < 7/12 (đpcm)
Đặt \(A=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+\dfrac{1}{44}+...+\dfrac{1}{80}\)
\(=\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}\right)+\) \(\left(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}\right)\)
Nhận xét:
\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}\) \(=\dfrac{1}{3}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}>\dfrac{1}{80}+\dfrac{1}{80}+...+\dfrac{1}{80}\) \(=\dfrac{1}{4}\)
\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}>\dfrac{1}{12}\)
Vậy \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{1}{12}\) (Đpcm)
Đặt 1/41 + 1/42 + .... + 1/60 ( có 20 phân số )
1/61 + 1/62 + .... + 1/80 ( có 20 phân số )
Ta có : 1/41 + 1/42 + .... + 1/60 > 1/60 + 1/60 + .... + 1/60 = 1/60 x 20 = 1/3
1/61 + 1/62 + .... + 1/80 > 1/80 + 1/80 + .... + 1/80 = 1/80 x 20 = 1/4
=> 1/41 + 1/42 + .... + 1/80 > 1/3 + 1/4 = 7/2
=> đpcm
vào ccâu hỏi tương tự có dạng jống thế đêý bn
tick cko mik đúng nhé
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12 ( ĐPCM )