K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

Cố gắng lên, mấy thánh sẽ phù hộ con!!!

23 tháng 12 2018

thánh rảnh thì thánh giải hộ con với 

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Số tổ hợp con có x phần tử là số tổ hợp chập x của 5.

=> Số tổ hợp con có lẻ phần tử là: \(C_5^1 + C_5^3 + C_5^5=5+10+1=16\)

     Số tổ con có chẵn phần tử là: \(C_5^0 + C_5^2 + C_5^4=1+10+5=16\)

\( \Rightarrow C_5^0 + C_5^2 + C_5^4 = C_5^1 + C_5^3 + C_5^5\) (đpcm)

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

Con lắc thứ hai có biên độ và tần số góc là: \(\left\{{}\begin{matrix}A_2=A_1=20cm\\\omega_2=\omega_1=20\pi\left(rad/s\right)\end{matrix}\right.\)

Chu kì của hai con lắc là: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{20\pi}=0,1\left(s\right)\)

Hai con lắc lệch về thời gian so với con lắc thứ nhất một phần tư chu kì nên ta có: 

\(\left[{}\begin{matrix}t_2=t_1+\dfrac{T}{4}\\t_2=t_1-\dfrac{T}{4}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x_2=20cos\left[20\pi\left(t+\dfrac{0,1}{4}\right)+\dfrac{\pi}{2}\right]\\x_2=20cos\left[20\pi\left(t-\dfrac{0,1}{4}\right)+\dfrac{\pi}{2}\right]\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x_2=20cos\left(20\pi t+\pi\right)\\x_2=20cos\left(20\pi t\right)\end{matrix}\right.\)

25 tháng 3 2016

mình mới học lớp 6 thôi

23 tháng 7 2016

bài  dài nên cô sẽ gợi ý An theo bước sau: 
đầu tiên ta chứng minh: \(0< a< b;\)0<m<n  thì : \(\frac{a+m}{b+m}< \frac{a+n}{b+n}\)(1)
thật vậy: \(\frac{a+m}{b+m}< \frac{a+n}{b+n}\Leftrightarrow\frac{a+m}{b+m}-\frac{a+n}{b+n}< 0\Leftrightarrow\left(n-m\right)\left(a-b\right) < 0\)(vì n-m>0; a-b<0)
TH1: nếu x và y cùng dấu khi đó: \(\left|x\right|\ge\left|x-y\right|\) hoặc \(\left|y\right|>\left|x-y\right|\)( chứng minh bằng cách chia hai trường hợp x,y>0; x<y<0)
giả sử |x|>|x-y|
ÁP dụng bất đẳng thức (1) với |x| và |x-y|, 1 và 2008 ta có:\(\frac{\left|x\right|}{\left|x\right|+2008}>\frac{\left|x-y\right|}{\left|x-y\right|+2008}\)suy ra bất đẳng thức đúng.
TH2: x, y trái dấu khi đó: \(\left|x-y\right|=\left|x\right|+\left|y\right|\)
ta có: \(\frac{\left|x-y\right|}{\left|x-y\right|+2008}=\frac{\left|x\right|+\left|y\right|}{\left|x\right|+\left|y\right|+2008}\)
ta thấy: \(\frac{\left|x\right|}{\left|x\right|+2008}>\frac{\left|x\right|}{\left|x\right|+\left|y\right|+2008}\)
             \(\frac{\left|y\right|}{\left|y\right|+2008}>\frac{\left|y\right|}{\left|x\right|+\left|y\right|+2008}\)
cộng hai vế của bất đẳng thức ta suy ra điều phải chứng minh.
TH3: nếu x = y = 0 thì bất đẳng thức đúng.
TA CÓ ĐIỀU PHẢI CHỨNG MINH.


 
 

23 tháng 7 2016

- Ai giúp đi ~~

13 tháng 6 2019

Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4\)

 \(=\left(a+2\sqrt{ab}+b\right)^2+\left(a-2\sqrt{ab}+b\right)^2\)

                                             \(=a^2+4ab+b^2+4a\sqrt{ab}+4b\sqrt{ab}+2ab+a^2+b^2-4a\sqrt{ab}-4b\sqrt{ab}+2ab\)

\(=2\left(a^2+b^2+6ab\right).\)(1)

Mà \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4\)(2)

Từ (1) và (2) suy ra:

\(\left(\sqrt{a}+\sqrt{b}\right)^4\le2\left(a^2+b^2+6ab\right).\)

Chứng minh tương tự ta cũng có:

\(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)

\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)

\(\left(\sqrt{b}+\sqrt{c}\right)^2\le2\left(b^2+c^2+6bc\right)\)

\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)

\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)

Suy ra :

\(A\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd\right)\)

\(=6\left(a+b+c+d\right)^2\)

\(\le6.1^2=6\)

Vậy giá trị lớn nhất của \(A=6\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}.\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

Do \(-1\le sin\left(1,5t+\dfrac{\pi}{3}\right)\le1\Leftrightarrow-3\le-3sin\left(1,5t+\dfrac{\pi}{3}\right)\le3\Leftrightarrow-3\le v\le3\)

a, Vận tốc con lắc đạt giá trị lớn nhất khi 

\(-3sin\left(1,5t+\dfrac{\pi}{3}\right)=3\\ \Leftrightarrow sin\left(1,5t+\dfrac{\pi}{3}\right)=-1\\ \Leftrightarrow sin\left(1,5t+\dfrac{\pi}{3}\right)=sin\left(-\dfrac{\pi}{2}\right)\\ \Leftrightarrow\left[{}\begin{matrix}1,5t+\dfrac{\pi}{3}=-\dfrac{\pi}{2}+k2\pi\\1,5t+\dfrac{\pi}{3}=\pi+\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\Leftrightarrow t=-\dfrac{5\pi}{9}+\dfrac{k4\pi}{3},k\in Z\)

Vậy vận tốc con lắc đạt giá trị lớn nhất tại các thời điểm \(t=-\dfrac{5\pi}{9}+\dfrac{k4\pi}{3},k\in Z\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

b, Để vận tốc con lắc bằng 1,5cm/s thì 

\(-3sin\left(1,5t+\dfrac{\pi}{3}\right)=1,5\\ \Leftrightarrow sin\left(1,5t+\dfrac{\pi}{3}\right)=-\dfrac{1}{2}\\ \)

\(\Leftrightarrow\left[{}\begin{matrix}1,5t+\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\\1,5t+\dfrac{\pi}{3}=\pi+\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\\ \)

\(\Leftrightarrow \left[{}\begin{matrix}t=-\dfrac{\pi}{3}+\dfrac{k4\pi}{3}\\t=\dfrac{5\pi}{9}+\dfrac{k4\pi}{3}\end{matrix}\right.\) \(\left(k\in Z\right)\)