K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

-Xét △GHK vuông tại G có:

\(HK^2=HG^2+GK^2\) (định lí Py-ta-go)

\(\Rightarrow HK=\sqrt{HG^2+GK^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

-Xét △GHK có: GM là phân giác (gt)

\(\Rightarrow\dfrac{MH}{MK}=\dfrac{GH}{GK}\) (định lí đường phân giác trong tam giác)

\(\Rightarrow\dfrac{MH}{GH}=\dfrac{MK}{GK}=\dfrac{MH+MK}{GH+GK}=\dfrac{HK}{GH+GK}\)

\(\Rightarrow MH=\dfrac{HK.GH}{GH+GK}=\dfrac{5.3}{3+4}=\dfrac{15}{7}\left(cm\right)\)

\(MK=\dfrac{HK.GK}{GH+GK}=\dfrac{5.4}{3+4}=\dfrac{20}{7}\left(cm\right)\)

24 tháng 4 2019

a)tam giác abc vuông tại a nên theo định lí Py-ta-go,ta có :

BC=AC2+AB2

hay BC^2 =12^2+9^2

BC^2=81+144=225
BC=15CM

b) tam giác abc vuông tại a có đường trung tuyến ứng với cạnh huyền bc 
=> AM=1/2 BC 
hay AM=1/2.15 
AM=7.5 cm
ta có g là trọng tâm cura tam giác abc 

=> GM=1/3 AM ( tính chất đường trung tuyến )

GM=1/3.7,5
GM=2,5 cm

6 tháng 7 2021

A B C N M G P

17 tháng 5 2022

vì tg ABC cân tại A
=> AM là đường phân giác 
=>góc BAG = góc CAG (t/c đường phân giác ) 
xét tam giác ABG và tam giác AGC có 
góc BAG = góc CAG (cmt) 
AG : chung 
AB = AC( gt ) 
=> tg AGB = tg AGC( C-G-C ) 

13 tháng 5 2018

a) Xét tam giâc ABC

có: AB< AC ( 4 cm < 6 cm)

=> góc ACB < góc góc ABC ( quan hệ cạnh với góc đối diện)

b) Xét tam giác ABM vuông tại A và tam giác CDM vuông tại C

có: AM = CM ( gt)

góc AMB = góc CMD ( đối đỉnh)

\(\Rightarrow\Delta ABM=\Delta CDM\left(cgv-gn\right)\)

c) ta có: \(AM=CM=\frac{AC}{2}=\frac{6}{2}=3cm\)

\(\Rightarrow AM=CM=3cm\)

Xét tam giác ABM vuông tại A

có: \(AB^2+AM^2=BM^2\left(py-ta-go\right)\)

thay số: \(4^2+3^2=BM^2\)

          \(BM^2=25\)

\(\Rightarrow BM=5cm\)

Xét tam giác ABC

có: BN = CN (gt)

=> AN là đường trung tuyến của BC

có: AM = CM (gt)

=> BM là đường trung tuyến của AC

mà AN cắt BM tại G

=> G là trọng tâm của\(\Delta ABC\)( định lí)

\(\Rightarrow\frac{GM}{BM}=\frac{1}{3}\)( định lí)

thay số: \(\frac{GM}{5}=\frac{1}{3}\Leftrightarrow GM=\frac{1}{3}.5=\frac{5}{3}cm\)

\(\Rightarrow GM=\frac{5}{3}cm\)