K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10

A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)

A= 3.( 2^1+2^3+2^5+...+2^1005)

Do 3 \(⋮\)3 => A\(⋮\)3

Ta có: A =.....

A= Ghép 3 số lại

A= 7. (2^1+ 2^4+...+2^670)

Do 7 \(⋮\)7 => A \(⋮\)7

2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi

Duyệt nhanh....

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

1)

a)     A = 21 + 22 + … + 22010

    = (21 + 22) + (23 + 24) + … + (22009 + 22010)

    = 2(1 + 2) + 23(1 + 2) + … + 22009(1 + 2)

    = 2.3 + 23.3 + … + 22009.3

Vì 3 chia hết cho 3 nên A chia hết cho 3.

  A = 21 + 22 + … + 22010

     = (21 + 22 + 23) + (24 + 25 + 26) + … + (22008 + 22009 + 22010)

     = 2(1 + 2 + 22) + 24(1 + 2 + 22) + … + 22008(1 + 2 + 22)

     = 2.7 + 24.7 + … + 22008.7

Vì 7 chia hết cho 7 nên A chia hết cho 7.

b)   B = 31 + 32 + … + 32010

          = (31 + 32 )+ (33 + 34) + (35 + 36) + … + (32009 + 32010)

          = 3(1 + 3) + 33(1 + 3) + … + 32009(1 + 3)

          = 3.4+ 33.4 + … + 32009.4

Vì 4 chia hết cho 4 nên B chia hết cho 4.

B = 31 + 32 + … + 32010

    = (31 + 32 + 33) + (34 + 35 + 36) + … + (32008 + 32009 + 32010)

    = 3(1 + 3 + 32) + 34(1 + 3 + 32) + … + 32008(1 + 3 + 32)

    = 3.13 + 34.13 + … + 32008.13

Vì 13 chia hết cho 13 nên B chia hết cho 13.

c)     C = 51 + 52 + … + 52010

           = (51 + 52 +53 + 54) + … + (52007 + 52008 + 52009 + 52010)

           = 5(1 + 5 + 52 + 53) + … + 52007(1 + 5 + 52 + 53)

           = 5.156 + … + 52007.156

Vì 156 chia hết cho 6, 12 nên C chia hết cho 6 và 12.

2) 

a)     Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1

     Vậy A = B ( vì đều bằng 22011 – 1 )

b)    Ta có: A =  2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009

           B =  20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010

Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.

c)     Ta có: A = 1030 = 103.10 = (103)10 = 10010

            B = 2100 = 210.10 = (210)10  = 102410

Vì 10010 < 102410 nên A < B.

d)    Ta có: A = 333444 = 3334.111 = (3334)111

                B = 444333 = 4443.111 = (4443)111

Ta so sánh 3334 và 4443

3334 = (3.111)4 = 34.1114 = 81.111.1113

4443 = (4.111)3 = 43.1113 = 64.1113

Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.

2)a)     Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1

     Vậy A = B ( vì đều bằng 22011 – 1 )

b)    Ta có: A =  2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009

           B =  20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010

Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.

c)     Ta có: A = 1030 = 103.10 = (103)10 = 10010

            B = 2100 = 210.10 = (210)10  = 102410

Vì 10010 < 102410 nên A < B.

d)    Ta có: A = 333444 = 3334.111 = (3334)111

                B = 444333 = 4443.111 = (4443)111

Ta so sánh 3334 và 4443

3334 = (3.111)4 = 34.1114 = 81.111.1113

4443 = (4.111)3 = 43.1113 = 64.1113

Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.

30 tháng 12 2016

Híc híc mình trả lời rồi mà nó đi đâu mất rồi!

30 tháng 12 2016

Thôi trả lời lại vậy;

Bài 1:

a)

* A = 21 + 22 + 23 + ... + 22010

A = (21 + 22) +(23 + 24) + ... + (22009 + 22010)

A = 21. (1 + 2) + 23. (1 + 2) + ... + 22009. ( 1 + 2)

A = 21. 3 + 23. 3 + ... + 22009. 3

A = 3. (21 + 23 + ... + 22009)

Vì 3 \(⋮\)3 nên 3. (21 + 23 + ... + 22009) \(⋮\)3

=> A \(⋮\)3

Vậy A \(⋮\)3.

* A = 21 + 22 + 23 + ... + 22010

A = (21 + 22 + 23) + (24 + 25 + 26) + ... (22008 + 22009 + 22010)

A = 21. (1 + 2 + 22) + 24. (1 + 2 + 22) + ... + 22008. ( 1 + 2 + 22)

A = 21. 7 + 24. 7 + ... + 22008. 7

A = 7. (21 + 24 + ... + 22008)

Vì 7 \(⋮\)7 nên 7. (21 + 24 + ... + 22008) \(⋮\)7

=> A \(⋮\)7

Vậy A \(⋮\)7

b) B = 31 + 32 + 33 + ... + 32010

B = (31 + 32) + ( 33 + 34) + ... + ( 32009 + 32010)

B = 31. (1+ 3) + 33. (1 + 3) + ... + 32009. ( 1 + 3)

B = 31. 4 + 33.4 + ... + 32009.4

B = 4. (31 + 33 + ... + 32009)

Vì 4 \(⋮\)4 nên 4. (31 + 33 + ... + 32009) \(⋮\)4

=> B \(⋮\)4

Vậy B \(⋮\)4

...... Mấy phần còn lại bạn làm tương tự nhé!

Còn bài 2 để mình làm sau tại vì mình mỏi tay quá!

Chúc bạn học tốt!

4 tháng 2 2016

+)A=2^1+2^2+2^3+2^4+...+2^2010

=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)

=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)

=>A=6+2^2.6+2^4.6+...+2^2008.6

=>A=6.(1+2^2+2^4+...+2^2008)

=>A=3.2.(1+2^2+2^4+...+2^2008)

=>A chia hết cho 3

A=2+2^2+2^3+2^4+...+2^2010

A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)

A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)

A=2.7+2^4.7+2^7.7+...+2^2008.7

A=7.(2+2^4+2^7+...+2^2008)

=> A chia hết cho 7

các phần khác làm tương tự

4 tháng 2 2016

A = 21 + 22 + 23 + 2+ .... + 22009 + 22010

=> A = ( 2+ 22 ) + ( 23 + 2) + .... + ( 22009 + 22010 )

=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )

=> A = 21.3 + 23.3 + .... + 22009.3

=> A = 3.( 21 + 23 + .... + 22009 )

Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )

A = 21 + 22 + 2+ 24 + 2+ 26 + .... + 22007 + 22008 + 22009

=> A = ( 21 + 22 + 23 ) + ( 24 + 2+ 26 ) + .... + ( 22007 + 22008 + 22009 )

=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )

=> A = 21.7 + 24.7 + .... + 22007.7

=> A = 7.( 21 + 24 + .... + 22007 )

Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )

Các ý sau tương tự .