K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
10 tháng 10 2023

- Đo góc, ta được góc ở đỉnh H của hình thang cân EFGH bằng góc G.

- Các cạnh bên của hình thang cân là EH và FG nên EH = FG (tính chất hình thang cân).

Các đường chéo là EG và FH nên EG = FH (tính chất hình thang cân).

23 tháng 10 2017

\(\sqrt[]{}\)

30 tháng 10 2017

2000 đồng thẳng tiến cho cô ngân(h.vi) nha   ( ^_^)     

30 tháng 11 2021

a: Xét ΔABC có 

E là trung điểm của AB

H là trung điểm của AC

Do đó: EH là đường trung bình của ΔABC

Suy ra: EH//BC và EH=BC/2(1)

Xét ΔBDC có 

F là trung điểm của BD

G là trung điểm của CD

Do đó: FG là đường trung bình của ΔBDC

Suy ra: FG//BC và FG=BC/2(2)

Xét ΔABD có 

E là trung điểm của AB

F là trung điểm của BD

Do đó: EF là đường trung bình của ΔABD

Suy ra: EF//AD và EF=AD/2

hay EF=BC/2(3)

Từ (1) và (2) suy ra EH//FG và EH=FG

Từ (2) và (3) suy ra EF=FG

Xét tứ giác EHGF có

EH//FG

EH=FG

Do đó: EHGF là hình bình hành

mà EF=FG

nên EHGF là hình thoi

EFGH là hình thang cân

=>EH=GF và HF=EG

=>FG=4cm và EG=7cm

7 tháng 10 2021

\(a,\left\{{}\begin{matrix}AE=EB\\AF=FC\end{matrix}\right.\Rightarrow EF\) là đtb tam giác ABC

\(\Rightarrow EF//BC\Rightarrow BEFC\) là hthang 

\(b,EF//BC\Rightarrow EF//GH\Rightarrow EFGH\) là hthang

Có HF là trung tuyến ứng cạnh huyền tam giác AHC nên \(HF=\dfrac{1}{2}AC\)

Mà \(\left\{{}\begin{matrix}AE=EB\\BG=GC\end{matrix}\right.\Rightarrow EG\) là đtb tg ABC \(\Rightarrow EG=\dfrac{1}{2}AC\)

Do đó \(HF=EG\) nên EFGH là hthang cân

26 tháng 12 2017

húuuuuu

26 tháng 12 2017

+ ta có E là trung điểm của AB => EF là đường trung bình trong tam giác ABC
F là trung điểm của AC
=> EF // BC (1)
+H là trung điểm của BD => HG là đường trung bình trong tam giác BDC
G là trung điểm CD
=> HG//BC(2)
từ (1) và (2) => EF//HG(*)
+ E là trung điểm AB; H là trung điểm BD=> EH là đường trung bình trong tam giác BAD=>EH//AD(3)
+ F là trung điểm của AC; G là trung điểm của CD=> FG là đường trung bình trong tam giác CAD=>FG//AD(4)
từ (3) và (4) => EH//FG(**)
từ (*) và (**) => tứ giác EFGH là hình bình hành ( LÀ HÌNH THOI CƠ BN NHƯNG MK ĐANG BẬN NÊN BN CỐ GẮNG CM TIẾP NHÉ!!!)

10 tháng 10 2021

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình của ΔABC

Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)

Xét ΔADC có 

H là trung điểm của AD

G là trung điểm của CD

Do đó: HG là đường trung bình của ΔADC

Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)

Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: \(HE=\dfrac{BD}{2}\)

mà AC=BD

nên HE=EF

Xét tứ giác EFGH có 

EF//HG

EF=HG

Do đó: EFGH là hình bình hành

mà HE=EF

nên EFGH là hình thoi