Tìm số tự nhiên m thoả mãn 3^m+2022 là số chính phương.
Giúp mình với!! Mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt đã cho có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-1\right)^2-m\left(m-5\right)>0\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\3m+1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m>-\dfrac{1}{3}\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2\left(m-1\right)}{m}\\x_1x_2=\dfrac{m-5}{m}\end{matrix}\right.\)
\(x_1< x_2< 2\Rightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-5}{m}+\dfrac{4\left(m-1\right)}{m}+4>0\\\dfrac{-2\left(m-1\right)}{m}< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{9m-9}{m}>0\\\dfrac{6m-2}{m}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}m>\dfrac{1}{3}\\m< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)
Kết hợp điều kiện ban đầu \(\Rightarrow\left[{}\begin{matrix}m>1\\-\dfrac{1}{3}< m< 0\end{matrix}\right.\)
Để tìm số tự nhiên n thoả mãn phương trình 2.2^2 + 3.2^3 + 3.2^4 + ... + n.2^n = 2^n + 11, chúng ta có thể thử từng giá trị của n cho đến khi phương trình được thỏa mãn.
Bắt đầu với n = 1: 2.2^2 = 2^2 + 11 8 = 4 + 11 8 = 15 Phương trình không thỏa mãn.
Tiếp tục với n = 2: 2.2^2 + 3.2^3 = 2^2 + 11 8 + 24 = 4 + 11 32 = 15 Phương trình không thỏa mãn.
Tiếp tục với n = 3: 2.2^2 + 3.2^3 + 3.2^4 = 2^3 + 11 8 + 24 + 48 = 8 + 11 80 = 19 Phương trình không thỏa mãn.
Tiếp tục với n = 4: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 = 2^4 + 11 8 + 24 + 48 + 64 = 16 + 11 144 = 27 Phương trình không thỏa mãn.
Tiếp tục với n = 5: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 = 2^5 + 11 8 + 24 + 48 + 64 + 160 = 32 + 11 304 = 43 Phương trình không thỏa mãn.
Tiếp tục với n = 6: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 = 2^6 + 11 8 + 24 + 48 + 64 + 160 + 384 = 64 + 11 688 = 75 Phương trình không thỏa mãn.
Tiếp tục với n = 7: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 = 2^7 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 = 128 + 11 2576 = 139 Phương trình không thỏa mãn.
Tiếp tục với n = 8: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 + 8.2^8 = 2^8 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 + 2048 = 256 + 11 4576 = 267 Phương trình không thỏa mãn.
Tiếp tục với n = 9: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 + 8.2^8 + 9.2^9 = 2^9 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 + 2048 + 4608 = 512 + 11 9600 = 523 Phương trình không thỏa mãn.
Tiếp tục với n = 10: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 + 8.2^8 + 9.2^9 + 10.2^10 = 2^10 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 + 2048 + 4608 + 10240 = 1024 + 11 23840 = 1035 Phương trình không thỏa mãn.
Như vậy, sau khi thử tất cả các giá trị của n từ 1 đến 10, ta thấy không có số tự nhiên n nào thỏa mãn phương trình đã cho.
ĐKXĐ: m<>-1
Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(m-2\right)\)
\(=\left(2m-2\right)^2-4\left(m^2-m-2\right)\)
\(=4m^2-8m+4-4m^2+4m-8\)
\(=-4m-4\)
Để phương trình có hai nghiệm phân biệt thì -4m-4>0
hay m<-1
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1\cdot x_2=\dfrac{m-2}{m+1}\\x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\end{matrix}\right.\)
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4x_1x_2\)
\(\Leftrightarrow\left(\dfrac{2m-2}{m+1}\right)^2-6\cdot\dfrac{m-2}{m+1}=0\)
\(\Leftrightarrow\left(2m-2\right)^2-6\left(m^2-m-2\right)=0\)
\(\Leftrightarrow4m^2-8m+4-6m^2+6m+12=0\)
\(\Leftrightarrow-2m^2-2m+16=0\)
\(\Leftrightarrow m^2-m-8=0\)
Đến đây bạn tự giải nhé
PT có 2 nghiệm \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4\left(m-2\right)\left(m+1\right)\ge0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m+8\ge0\\ \Leftrightarrow12-4m\ge0\\ \Leftrightarrow m\le3\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\\x_1x_2=\dfrac{m-2}{m+1}\end{matrix}\right.\)
\(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=-4\\ \Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-4\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=-4x_1x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2=-2x_1x_2\\ \Leftrightarrow\dfrac{4\left(m-1\right)^2}{\left(m+1\right)^2}=\dfrac{4-2m}{m+1}\\ \Leftrightarrow4\left(m-1\right)^2=\left(4-2m\right)^2\\ \Leftrightarrow4m^2-8m+4=16-16m+4m^2\\ \Leftrightarrow8m=12\Leftrightarrow m=\dfrac{3}{2}\left(tm\right)\)
Ta đặt \(a^2+4b+3=k^2\)
\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)
Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)
Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)
\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)
\(\Leftrightarrow c^2+c+1+b=l^2\)
Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.
Nếu \(c< b< 2c+1\) thì
\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.
Do vậy, \(c=b\) hay \(a=2b+1\)
Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.
Ta có 3m + 2022
Nếu m = 0 ⇒ 30 + 2022 = 2023
Mà số chính phương không có chữ số tận cùng là 3 ( loại )
Nếu m ≥ 1 ⇒ 3m + 2022 chia 3 dư 2 ( 3m ⋮ 3; 2022 chia 3 dư 2 )
Mà số chính phương chia 3 chỉ dư 0 hoặc 1 ( loại )
Vậy không có số tự nhiên nào thỏa mãn 3m + 2022 là số chính phương
Lời giải:
Với $m=0$ thì $3^0+2022=2023$ không là scp (loại)
Với $m=1$ thì $3^m+2022=2025$ là scp (chọn)
Vơi $m\geq 2$ thì $3^m+2022\vdots 3$ do $3^m\vdots 3, 2022\vdots 3$ và $3^m+2022\not\vdots 9$ do $3^m\vdots 9$ và $2022\not\vdots 9$
Một số chia hết cho 3 nhưng không chia hết cho 9 nên $3^m+2022$ không phải scp với mọi $m\geq 2$
Vậy $m=1$ là đáp án duy nhất.