Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
a) \(2x^2+3y>0\)
b) 2x + \(3y^2\le0\)
c) 2x + 3y > 0
d) \(2x^2-y^2+3x-2y< 0\)
e) 3y < 1
f) x - 2y \(\le1\)
g) x \(\le0\)
h) y > 0
i) 4(x-1) + 5(y-3) > 2x - 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bất phương trình a), b), c) là các bất phương trình bậc nhất hai ẩn.
Bất phương trình d) không là bất phương trình bậc nhất hai ẩn vì có chứa \({y^2}.\)
a) 2x+3y>6 là bất phương trình bậc nhất hai ẩn với a=2, b=3, c=6
b) \({2^2}x + y \le 0 \Leftrightarrow 4x + y \le 0\) là bất phương trình bậc nhất hai ẩn với a=4, b=1, c=0
c) \(2{x^2} - y \ge 1\) có bậc của x là 2 nên đây không là bất phương trình bậc nhất hai ẩn.
Đáp án D là đáp án đúng
Thế tọa độ O lần lượt vào các đáp án thì A: \(2\le0\) (sai), B: \(2\le0\) (sai), C:\(-2\ge0\) (sai)
D: \(2\ge0\) (đúng)
Phải là dấu ngoặc nhọn chứ=0
\(\left\{{}\begin{matrix}2x+3y-6< 0\\x\ge0\\2x-3y-1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y-6\le2x+3y-6< 0\\x\ge0\\-3y-1\le2x-3y-1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y-6< 0\\-3y-1\le0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y< 2\\y\ge-\dfrac{1}{3}\\x\ge0\end{matrix}\right.\)
=> Miền nghiệm là \([0;2)\)
A. 2x + y + 3 = 0
B. 2x + 3y - 8 = 0
C. 2x + 3y + 8 = 0
D. 3x - 2y + 1 = 0
$BC$ có vectơ chỉ phương là: $\overrightarrow{BC}=(2;3)$
Gọi $H$ là chân đường cao hạ từ $A$ xuống $BC$
$\Rightarrow AH$ có vectơ pháp tuyến là: $\overrightarrow{BC}=(2;3)$
$AH:2x+3y-8=0$
Chọn đáp án: $B$
a) Vẽ đường thẳng \(3+2y=0\). Vì điểm O(0;0) có tọa độ thõa mãn bất phương trình nên phần không tô màu là miền nghiệm của bất phương trình:
Bất phương trình bậc nhất 2 ẩn :
\(2x+3y>0\Rightarrow Câu\) \(C\)
\(x-2y\le1\Rightarrow Câu\) \(f\)
\(4\left(x-1\right)+5\left(y-3\right)>2x-9\)
\(\Leftrightarrow4x-4+5y-15-2x+9>0\)
\(\Leftrightarrow2x+5y-10>0\) \(\Rightarrow Câu\) \(i\)