Giải các phương trình sau:
a)\(\left(4x-1\right)\left(x-3\right)=\left(x-3\right)\left(5x+2\right)\) )
b)\(\left(x+3\right)\left(x-5\right)+\left(x+3\right)\left(3x-4\right)=0\). Giúp mik nhoa mik tích cho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ:
\(a,\left(4x-1\right)\left(x-3\right)=\left(x-3\right)\left(5x+2\right)\Leftrightarrow\left(4x-1\right)\left(x-3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\left(x-3\right)\left(4x-1-5x-2\right)=0\Leftrightarrow\left(x-3\right)\left(-x-3\right)=0\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
\(b,\left(x+3\right)\left(x-5\right)+\left(x+3\right)\left(3x-4\right)=0\Leftrightarrow\left(x+3\right)\left(x-5+3x-4\right)=0\)
\(\left(x-3\right)\left(4x-9\right)=0\orbr{\begin{cases}x=3\\x=\frac{9}{4}\end{cases}}\)
\(c,\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\Leftrightarrow\left(1-x\right)\left(5x+3\right)=\left(7-3x\right)\left(1-x\right)\)
\(\left(1-x\right)\left(5x+3-7+3x\right)=0\Leftrightarrow\left(1-x\right)\left(8x-4\right)=0\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
a: =>|x-7|=3-2x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(-2x+3\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+7\right)\left(2x-3+x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x+4\right)\left(3x-10\right)=0\end{matrix}\right.\Leftrightarrow x=-4\)
b: =>|2x-3|=4x+9
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(4x+9-2x+3\right)\left(4x+9+2x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(2x+12\right)\left(6x+6\right)=0\end{matrix}\right.\Leftrightarrow x=-1\)
c: =>3x+5=2-5x hoặc 3x+5=5x-2
=>8x=-3 hoặc -2x=-7
=>x=-3/8 hoặc x=7/2
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
a) Ta có: \(2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)
b) Ta có: \(2x^3+6x^2=x^2+3x\)
\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)
\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)
c) Ta có: \(x^2+\left(x+2\right)\left(11x-7\right)=4\)
\(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)
\(\Leftrightarrow12x^2+15x-18=0\)
\(\Leftrightarrow12x^2+24x-9x-18=0\)
\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\12x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{-2;\dfrac{3}{4}\right\}\)
a) (x-1)(5x+3)=(3x-8)(x-1)
= (x-1)(5x+3)-(3x-8)(x-1)=0
=(x-1)[(5x+3)-(3x-8)]=0
=(x-1)(5x+3-3x+8)=0
=(x-1)(2x+11)=0
\(\Leftrightarrow\) x-1=0 hoặc 2x+11=0
\(\Leftrightarrow\) x=1 hoặc x=\(\dfrac{-11}{2}\)
Vậy S={1;\(\dfrac{-11}{2}\)}
b) 3x(25x+15)-35(5x+3)=0
=3x.5(5x+3)-35(5x+3)=0
=15x(5x+3)-35(5x+3)=0
=(5x+3)(15x-35)=0
\(\Leftrightarrow\) 5x+3=0 hoặc 15x-35=0
\(\Leftrightarrow\) x=\(\dfrac{-3}{5}\) hoặc x=\(\dfrac{7}{3}\)
Vậy S={\(\dfrac{-3}{5};\dfrac{7}{3}\)}
c) (2-3x)(x+11)=(3x-2)(2-5x)
=(2-3x)(x+11)-(3x-2)(2-5x)=0
=(3x-2)[(x+11)-(2-5x)]=0
=(3x-2)(x+11-2+5x)=0
=(3x-2)(6x+9)=0
\(\Leftrightarrow\) 3x-2=0 hoặc 6x+9=0
\(\Leftrightarrow\) x=\(\dfrac{2}{3}\) hoặc x=\(\dfrac{-3}{2}\)
Vậy S={\(\dfrac{2}{3};\dfrac{-3}{2}\)}
d) (2x2+1)(4x-3)=(2x2+1)(x-12)
=(2x2+1)(4x-3)-(2x2+1)(x-12)=0
=(2x2+1)[(4x-3)-(x-12)=0
=(2x2+1)(4x-3-x+12)=0
=(2x2+1)(3x+9)=0
\(\Leftrightarrow\)2x2+1=0 hoặc 3x+9=0
\(\Leftrightarrow\)x=\(\dfrac{1}{2}\)hoặc x=\(\dfrac{-1}{2}\) hoặc x=-3
Vậy S={\(\dfrac{1}{2};\dfrac{-1}{2};-3\)}
e) (2x-1)2+(2-x)(2x-1)=0
=(2x-1)[(2x-1)+(2-x)=0
=(2x-1)(2x-1+2-x)=0
=(2x-1)(x+1)=0
\(\Leftrightarrow\) 2x-1=0 hoặc x+1=0
\(\Leftrightarrow\) x=\(\dfrac{-1}{2}\) hoặc x=-1
Vậy S={\(\dfrac{-1}{2}\);-1}
f)(x+2)(3-4x)=x2+4x+4
=(x+2)(3-4x)=(x+2)2
=(x+2)(3-4x)-(x+2)2=0
=(x+2)[(3-4x)-(x+2)]=0
=(x+2)(3-4x-x-2)=0
=(x+2)(-5x+1)=0
\(\Leftrightarrow\) x+2=0 hoặc -5x+1=0
\(\Leftrightarrow\) x=-2 hoặc x=\(\dfrac{1}{5}\)
Vậy S={-2;\(\dfrac{1}{5}\)}
a,(x + 6)(3x +1) + x+6 = 0
(x+6)(3x +2)=0
x= -6
x= -2/3
b, x= -4 hoăc x =-8/5
a,(x+6)(3x+1)+x+6=0
=>(x+6)(3x+2)=0
=>x+6=0 hoặc 3x+2=0
=>x=-6 hoặc x=-2/3
b,(x+4)(5x+9)-x-4=0
=>(x+4)(5x+8)=0
=>x+4=0 hoặc 5x+8=0
=>x=-4 hoặc x=-8/5
\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)
\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)
\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)
\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)
\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)
\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)
\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)
\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)
\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)
a, x= -3
b, x= -3, x= 3/2
Sao khó vậy mày