Tìm số tự nhiên x thỏa mãn:
a) 7 + x = 362
b) 25 - x = 15
c) x - 56 = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên x biết:
a) \(123+x=135\)
\(\Rightarrow x=135-123\)
\(\Rightarrow x=12\)
b) \(\left(x+15\right)-56=15\)
\(\Rightarrow x+15-56=15\)
\(\Rightarrow x=15-15+56\)
\(\Rightarrow x=0+56\)
\(\Rightarrow x=56\)
c) \(\left(x+3^3\right)\cdot6^3=3\cdot6^5\)
\(\Rightarrow x+3^3=\dfrac{3\cdot6^5}{6^3}\)
\(\Rightarrow x+3^3=3\cdot6^2\)
\(\Rightarrow x+27=108\)
\(\Rightarrow x=108-27\)
\(\Rightarrow x=81\)
a)
\(\begin{array}{l}\left( {13x{\rm{ }}-{\rm{ }}{{12}^2}} \right):{\rm{ }}5{\rm{ }} = {\rm{ }}5\\13x{\rm{ }}-{\rm{ }}{12^2} = 5.5\\13x{\rm{ }}-{\rm{ }}144 = 25\\13x = 25 + 144\\13x = 169\\x = 13\end{array}\)
Vậy \(x = 13\)
b)
\(\begin{array}{l}3x\left[ {{8^2} - 2.\left( {{2^5} - {\rm{ }}1} \right)} \right]{\rm{ }} = {\rm{ }}2022\\3x\left[ {64 - 2.\left( {32 - {\rm{ }}1} \right)} \right]{\rm{ }} = {\rm{ }}2022\\3x\left[ {64 - 2.31} \right]{\rm{ }} = {\rm{ }}2022\\3x\left( {64 - 62} \right){\rm{ }} = {\rm{ }}2022\\3x.2 = 2022\\6x = 2022\\x = 337\end{array}\)
Vậy \(x = 337.\)
a: \(\Leftrightarrow x-1\in\left\{-1;1;2;3;6\right\}\)
hay \(x\in\left\{0;2;3;4;7\right\}\)
b: \(\Leftrightarrow x+1\in\left\{1;2;5;10\right\}\)
hay \(x\in\left\{0;1;4;9\right\}\)
c: x=UCLN(64;48;88)=8
g: \(x\in BC\left(12;18\right)\)
mà x<=144
nên \(x\in\left\{0;36;72;108;144\right\}\)
Bài 1:
\(101\cdot125+101\cdot25-101\cdot50\)
\(=101\cdot\left(125+25-50\right)\)
\(=101\cdot100\)
\(=10100\)
Bài 2:
\(76\cdot115+56\cdot24+59\cdot24\)
\(=76\cdot115+24\cdot\left(56+59\right)\)
\(=76\cdot115+24\cdot115\)
\(=115\cdot\left(76+24\right)\)
\(=115\cdot100\)
\(=11500\)
a) \({x^2} = 4\)
\(x^2=(\pm 2)^2\)
\(x=2\) hoặc \(x=-2\)
Vậy \(x \in\) {2;-2}
b) \({x^2} = 81\)
\(x^2=(\pm 9)^2\)
\(x = 9\) hoặc \(x = - 9\).
Vậy \(x \in\) {9;-9}
\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)
\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)
cau 1 :1,6
câu 2 : sai đề bài
cau 3 chua lam duoc
cau 4 : chua lam duoc
cau 5 :101/10
1) 2n - 5 \(⋮\)n + 1
2(n + 1) - 7 \(⋮\)n + 1
Do 2(n+1) \(⋮\)n+1 nên 7 \(⋮\)n+1 \(\Rightarrow\)n + 1 \(\in\)Ư(7) = { 1; -1; 7; -7}
Với n + 1 = 1 \(\Rightarrow\)n = 0
n + 1 = -1 \(\Rightarrow\)n = -2
n + 1 = 7 \(\Rightarrow\)n = 6
n + 1 = -7 \(\Rightarrow\)n = -8
Vậy n = { 0; -2; 6; -8}
a: \(x\in\left\{-4;-3;-2;-1;0;1;2;3;4\right\}\)
Tổng là 0
b: \(x\in\left\{-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7\right\}\)
Tổng là 7
a) 7 + x = 362 => x = 362 - 7 => x = 355
Vậy x = 355
b) 25 - x = 15 => x = 25 – 15 => x = 10
Vậy x = 10
c) x - 56 = 4 => x = 56 + 4 => x = 60.
Vậy x = 60
` a. 7 + x = 362 `
` x = 362 - 7 `
` x = 355.`
Vậy ` x= 355`
`b. 25 - x = 15 `
` x = 25 - 15 `
` x = 10 `
Vậy ` x = 10`
`c. x - 56 = 4`
` x = 4 + 56 `
` x = 60`
Vậy ` x = 60.`