K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Ta có:

\({(2 + 3x)^4} = C_4^0{2^4} + C_4^1{2^3}3x + C_4^2{2^2}{\left( {3x} \right)^2} + C_4^32.{\left( {3x} \right)^3} + C_4^4{\left( {3x} \right)^4}\)

=> Hệ số của của \({x^2}\)là \(C_4^2{.2^2}{.3^2} = 36C_4^2.\)

Chọn D.

SHTQ của \(\left(3x+2\right)^5\) là \(C^k_5\cdot\left(3x\right)^{5-k}\cdot2^k=C^k_5\cdot3^{5-k}\cdot2^k\cdot x^{5-k}\)

Hệ số của số hạng chứa x tương ứng với 5-k=1

=>k=4

=>Hệ số là \(C^4_5\cdot3^{5-4}\cdot2^4=240\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a)

\(\begin{array}{l}C_4^0 + 2C_4^1 + {2^2}C_4^2 + {2^3}C_4^3 + {2^4}C_4^4\\ = {1^4}.C_4^0 + {1^3}.2C_4^1 + {1^2}{.2^2}C_4^2 + {1.2^3}C_4^3 + {2^4}C_4^4\\ = {\left( {1 + 2} \right)^4} = {3^4}\end{array}\)

\( = 81\) (đpcm)

b)

\(\begin{array}{l}C_4^0 - 2C_4^1 + {2^2}C_4^2 - {2^3}C_4^3 + {2^4}C_4^4\\ = {1^4}.C_4^0 - {1^3}.2C_4^1 + {1^2}{.2^2}C_4^2 - {1.2^3}C_4^3 + {2^4}C_4^4\\ = {\left( {1 - 2} \right)^4} = {\left( { - 1} \right)^4}\end{array}\)

\( = 1\) (đpcm)

3 tháng 2 2018

7 tháng 2 2017

Đáp án C

2 − x n = ∑ k = 0 n C n k − x k .2 n − k ⇒  hệ số của x 4  là: C n 4 − 1 4 .2 n − 4 = 280 ⇔ n = 7  

5 tháng 3 2023

loading...  

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Ta có:

\({(2x + 3)^5} = 32{x^5} + 240{x^4} + 720{x^3} + 1080{x^2} + 810x + 243\)

Hệ số của \({x^3}\) là 720

Hệ số của \({x^4}\) là 240.  

Vậy  hệ số của \({x^3}\) lớn hơn hệ số của \({x^4}\).

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \({\left( {3x + y} \right)^4} = {\left( {3x} \right)^4} + 4.{\left( {3x} \right)^3}y + 6.{\left( {3x} \right)^2}{y^2} + 4.\left( {3x} \right){y^3} + {y^4}\)

\( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\)

b) \(\begin{array}{l}{\left( {x - \sqrt 2 } \right)^5} = \left( {x + (-\sqrt 2) } \right)^5 ={x^5} + 5.{x^4}.\left( { - \sqrt 2 } \right) + 10.{x^3}.{\left( { - \sqrt 2 } \right)^2} + 10.{x^2}.{\left( { - \sqrt 2 } \right)^3} + 5.x.{\left( { - \sqrt 2 } \right)^4} + 1.{\left( { - \sqrt 2 } \right)^5}\\ = {x^5} - 5\sqrt 2 .{x^4} + 20{x^3} - 20\sqrt 2 .{x^2} + 20x - 4\sqrt 2 \end{array}\)