K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

a,Xét tam giác ACE và tam giác ABD có:
A chung
AEC=ADB(=90)
→ACE∼ABD(g−g)
b,ACE∼ABD
→AC/AB=AE/AD
→AD/AB=AE/AC
Xét tam giác ADE và tam giác ABC có:
A chung
AD/AB=AE/AC
→ADE∼ABC(c−g−c)
→AED=ACB
Ta có: DEH=90−AED
HBC=90−DCB
→DEH=HBC    (Vì AED=DCB-cmt)
Xét tam giác EHD và tam giác HBC có:
EHD=BHC
DEH=HBC
→EDH∼BCH(g−g)
→HE/HB=HD/HC
hay HE.HC=HB.HD

13 tháng 10 2019

B K E C H A D M

a)DC//BE (cùng vuông góc với AC);DB//CE (cùng vuông góc với AB) => là hình bình hành

b) hình bình hình thì 2 đường chéo giao nhau tại trung điểm mỗi đường hay DE cắt BC tại M và M là trung điểm DE

Để DE đi qua A tức là D;E;A thằng hàng

mà AE là một đường cao hay AE vuông góc BC nên D;E;A thẳng hàng tức là DE vuông góc với BC 

hình bình hành có 2 đường chéo vuông góc là hình thoi

c) tứ giác ABDC có góc DBA +góc DCA =180 nên góc BAC+ góc BDC=180

13 tháng 10 2019

Mượn hình của bạn Manh nhé!

a) Ta có: DB // CK ( \(\perp\)AB)

=> DB // CE   (1)

BH // DC ( \(\perp\) AC )

=> DC // BE  (2)

Từ (1) ; (2) => DBEC là hình bình hành.

b) +) Theo câu a) DBEC là hình bình hành 

=> Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.

Mà M là trung điểm BC => M là trung điểm DE.

+) CK; BH là hai đường cao của \(\Delta ABC\)  và CK ; BH cắt nhau tại E.

=> E là trực tâm của \(\Delta ABC\)

=> AE là đường cao hạ từ A. (3)

Theo giả thiết DE qua A  mà DE cắt BC tại M là trung điểm cạnh  BC

=> AE qua trung điểm của cạnh BC

=>  AE là đường trung tuyến  của \(\Delta ABC\) (4)

Từ (3); (4) => \(\Delta ABC\) cân tại A

c) Em tham khảo bài làm bạn Manh.

11 tháng 7 2018

ai tích mình mình tích lại cho