4x2+2ax+a-1 ======phân tích đa thức thành nhân tử đó bạn làm giúm mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
a: \(4x^2-x-5=\left(4x-5\right)\left(x+1\right)\)
b: \(x^2-2x-15=\left(x-5\right)\left(x+3\right)\)
\(ax^2+a-axy+2ax-ay\)
\(a\left(x^2+2x+1\right)-ay\left(x+1\right)\)
\(a\left(x+1\right)^2-ay\left(x+1\right)\)
\(\left(x+1\right)\left[a\left(x+1\right)-ay\right]\)
\(\left(x+1\right)\left(ax+a-ay\right)\)
\(a\left(x+1\right)\left(x+1-y\right)\)
a/ \(4x^2-9\)
\(=\left(2x-3\right)\left(2x+3\right)\)
b/ \(3x\left(3x-2\right)+1\)
\(=9x^2-6x+1\)
\(=\left(3x-1\right)^2\)
\(a,=\left(2x-3\right)\left(2x+3\right)\)
\(b,=9x^2-6x+1=\left(3x-1\right)^2\)
a) $4x^2+4x+1$
$=(2x)^2+2\cdot2x\cdot1+1^2$
$=(2x+1)^2$
b) $x^2+6x-y^2+9$
$=(x^2+6x+9)-y^2$
$=(x^2+2\cdot x\cdot3+3^2)-y^2$
$=(x+3)^2-y^2$
$=(x+3-y)(x+3+y)$
$\text{#}Toru$
a: \(4x^2+4x+1\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2\)
\(=\left(2x+1\right)^2\)
b: \(x^2+6x-y^2+9\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3+y\right)\left(x+3-y\right)\)
a: \(=x\left(x^2+4x+4-z^2\right)\)
\(=x\left(x+2-z\right)\left(x+2+z\right)\)
Lời giải:
a. Không phân tích được thành nhân tử
b. \(a^4+a^2-22=(a^2+\frac{1}{2})^2-\frac{89}{4}=(a^2+\frac{1-\sqrt{89}}{2})(a^2+\frac{1+\sqrt{89}}{2})\)
(thông thường nhân tử là số hữu tỉ, phân tích kiểu này như cố để thành nhân tử cũng không hợp lý lắm, bạn coi lại đề)
c.
$x^4+4x^2-5=(x^4-x^2)+(5x^2-5)$
$=x^2(x^2-1)+5(x^2-1)=(x^2-1)(x^2+5)=(x-1)(x+1)(x^2+5)$
Lời giải:
$x^2-y^2+a^2-b^2+2ax+2by=(x^2+a^2+2ax)-(y^2+b^2-2by)$
$=(x+a)^2-(y-b)^2=(x+a-y+b)(x+a+y-b)$
\(4x^2+2ax+a-1=\left(4x^2-1\right)+\left(2ax+a\right)=\left(2x+1\right).\left(2x-1\right)+a.\left(2x+1\right)\)
\(=\left(2x+1\right).\left(2x-1+a\right)\)
\(4x^2+2ax+a-1\)
= \(\left[\left(2x\right)^2-1\right]+a\left(2x+1\right)\)
= \(\left(2x-1\right)\left(2x+1\right)+a\left(2x+1\right)\)
=\(\left(2x+1\right)\left(2x-1+a\right)\)