1. Cho ba điểm A,B,C phân biệt không thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó?
2. Cho năm điểm A,B,C,D,E phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó?
3. Cho tam giác ABC có A', B', C' lần lượt trung điểm của BC, CA, AB
Chứng minh \(\overrightarrow{BC'}\) =\(\overrightarrow{C'A}\)...
Đọc tiếp
1. Cho ba điểm A,B,C phân biệt không thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó?
2. Cho năm điểm A,B,C,D,E phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó?
3. Cho tam giác ABC có A', B', C' lần lượt trung điểm của BC, CA, AB
Chứng minh \(\overrightarrow{BC'}\) =\(\overrightarrow{C'A}\) =\(\overrightarrow{A'B'}\)
4. Cho vecto \(\overrightarrow{AB}\)và một điểm C. Hãy dựng điểm D sao cho \(\overrightarrow{AB}\) =\(\overrightarrow{CD}\)
5. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, CD, AD, BC. Chứng minh \(\overrightarrow{MP}\) =\(\overrightarrow{QN}\) , \(\overrightarrow{MQ}\)=\(\overrightarrow{PN}\)
6. Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh rằng
(1) \(\overrightarrow{AB}\) -\(\overrightarrow{BC}\) =\(\overrightarrow{DB}\) , | \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\) |= AC
(2) Nếu | \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\) |= | \(\overrightarrow{CB}\) - \(\overrightarrow{CD}\) | thì ABCD là hình chữ nhật
7. Cho tam giác ABC đều có độ dài cạnh là a. Tính độ dài các vecto \(\overrightarrow{AB}\) + \(\overrightarrow{BC}\) , \(\overrightarrow{AB}\) - \(\overrightarrow{BC}\)
a) Nếu A, B, C thẳng hàng thì đường thẳng AB trùng đường thẳng AC, do đó hai vecto \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương.
b) Nếu hai vecto \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương thì đường thẳng AB trùng đường thẳng AC, do đó ba điểm A, B, C có thẳng hàng.