Cho 2 góc kề bù xOy và yOz. Vẽ Om, On lần lượt là tia phân giác của các góc xOy và yOz. Từ điểm A trên tia Oy vẽ các tia vuông góc với Om, On lần lượt cắt Ox, Oz tại B và C. Chứng minh: Góc BAC = 90 độ, nhanh nha, có lời giải đầy đủ nữa, nhanh nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: x O z ^ = 90 ° = > z O y ^ = 30 °
Do y O t ^ = 90° nên t O z ^ = 60°.
b) Vì Om, On lần lượt là phân giác
của y O z ^ và x O t ^ nên:
m O z ^ = n O t ^ = 15°.
Do đó: m O n ^ = m O t ^ + t O z ^ + z O n ^ = 15° + 60° +15° = 90°
yOz kề bù với xOy
=> yOz + xOy = 180o
=> yOz = 150o
Ot là p/g của xOy => xOt = tOy = xOy/2 = 15o
Om là p/g của yOz => zOm = yOm = yOz/2 = 75o
Vì yOz kề bù với xOy
=> Tia Ox,Oz đối nhau
=> zOm và xOm kề bù
=> zOm + xOm = 180o => xOm = 105o
Vì xOt < xOm ( 15o<105o)
=> Ot nằm giữa Ox, Om
=> xOt + tOm = xOm
=> tOm = 90o
Có xOn + xOm = 105o +75o = 180o
=> xOn và xOm kề bù
=> Om, On đối nhau
Vì Om là tia phân giác \(\widehat{xOy}\)=>\(\widehat{xOm}=\widehat{mOy}=\frac{\widehat{xOy}}{2}\)
On là tia phân giác \(\widehat{yOz}\)=>\(\widehat{yOn}=\widehat{nOz}=\frac{\widehat{yOz}}{2}\)\(\)
Ta có:\(\widehat{mOy}+\widehat{yOn}=\frac{\widehat{xOy}}{2}+\frac{\widehat{yOz}}{2}\)=\(\frac{\widehat{xOy}+\widehat{yOz}}{2}\)\(=\frac{180độ}{2}=90độ\)
=>\(\widehat{mOn}=90độ\)
Vì \(AB⊥Om\) ;\(CO⊥Om\)
=>AB//CO=>\(\widehat{CAB}+\widehat{ACO}=180độ\)(hai góc trong cùng phía bù nhau)
\(\widehat{CAB}+90độ=180độ\)
\(\widehat{CAB}=90độ\)