cho x là số thực thỏa mãn x^2 + 1/x^2=4 tìm giá trị của x^4 + 1/x^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{x}+\dfrac{2}{2\sqrt{xy}}\ge\dfrac{1}{x}+\dfrac{2}{x+y}=2\left(\dfrac{1}{2x}+\dfrac{1}{x+y}\right)\ge2.\dfrac{4}{2x+x+y}=\dfrac{8}{3x+y}\ge\dfrac{8}{4}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
Ta sẽ chứng minh \(P_{min}=1\)
TH1: \(xyz=0\)
\(\Rightarrow x^2y^2z^2=0\Rightarrow x^4+y^4+z^4=1\)
\(P=x^2+y^2+z^2\ge\sqrt{x^4+y^4+z^4}=1\)
TH2: \(xyz\ne0\) , từ điều kiện, tồn tại 1 tam giác nhọn ABC sao cho \(\left\{{}\begin{matrix}x^2=cosA\\y^2=cosB\\z^2=cosC\end{matrix}\right.\)
\(P=cosA+cosB+cosC-\sqrt{2cosA.cosB.cosC}\)
Ta sẽ chứng minh \(cosA+cosB+cosC-\sqrt{2cosA.cosB.cosC}\ge1\)
\(\Leftrightarrow4sin\dfrac{A}{2}sin\dfrac{B}{2}sin\dfrac{C}{2}\ge\sqrt{2cosA.cosB.cosC}\)
\(\Leftrightarrow8sin^2\dfrac{A}{2}sin^2\dfrac{B}{2}sin^2\dfrac{C}{2}\ge cosA.cosB.cosC\)
\(\Leftrightarrow\dfrac{8sin^2\dfrac{A}{2}sin^2\dfrac{B}{2}sin^2\dfrac{C}{2}}{8sin\dfrac{A}{2}sin\dfrac{B}{2}sin\dfrac{C}{2}cos\dfrac{A}{2}cos\dfrac{B}{2}cos\dfrac{C}{2}}\ge cotA.cotB.cotC\)
\(\Leftrightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}tan\dfrac{C}{2}\ge cotA.cotB.cotC\)
\(\Leftrightarrow tanA.tanB.tanC\ge cot\dfrac{A}{2}cot\dfrac{B}{2}cot\dfrac{C}{2}\)
\(\Leftrightarrow tanA+tanB+tanC\ge cot\dfrac{A}{2}+cot\dfrac{B}{2}+cot\dfrac{C}{2}\)
Ta có:
\(tanA+tanB=\dfrac{sin\left(A+B\right)}{cosA.cosB}=\dfrac{2sinC}{cos\left(A-B\right)-cosC}\ge\dfrac{2sinC}{1-cosC}=\dfrac{2sin\dfrac{C}{2}cos\dfrac{C}{2}}{2sin^2\dfrac{C}{2}}=cot\dfrac{C}{2}\)
Tương tự: \(tanA+tanC\ge cot\dfrac{B}{2}\) ; \(tanB+tanC\ge cot\dfrac{A}{2}\)
Cộng vế với vế ta có đpcm
Vậy \(P_{min}=1\) khi \(\left(x^2;y^2;z^2\right)=\left(1;0;0\right)\) và các hoán vị hoặc \(\left(x^2;y^2;z^2\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)
Nháp thử trước nhé: (thường gọi là định hướng làm bài)
Thêm đk: x,y>0
Ta thử khai thác giả thiết:
Biến đổi vế trái giả thiết,ta có:
\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Leftrightarrow2x^2+\frac{y^2}{4}+\frac{1}{x^2}-1=3\)
\(\Leftrightarrow x^2+\left(\frac{y^2}{4}+1\right)+\left(\frac{1}{x^2}+x^2\right)-1=3\)
\(3\ge x^2+2\sqrt{\frac{y^2}{4}.1}+2\sqrt{\frac{1}{x^2}.x^2}-1\)
\(\Leftrightarrow3\ge x^2+y+1\)\(\Leftrightarrow2\ge x^2+y\)
\(\Leftrightarrow2\ge x^2+\frac{y^2}{y}\ge2\sqrt{\frac{\left(xy\right)^2}{y}}\)
Suy ra \(\Rightarrow\sqrt{\frac{\left(xy\right)^2}{y}}\le1\Leftrightarrow\frac{\left(xy\right)^2}{y}\le1\Rightarrow\left(xy\right)^2\le y\Rightarrow P=xy\le\sqrt{y}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{\sqrt{2}}{2};y=2\)
Có dấu "=" rồi => dễ tìm min hơn :v
à không,nãy nhầm rồi.Thử lại:
\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Leftrightarrow x^2+\left(\frac{y^2}{4}+1\right)+\left(\frac{1}{x^2}+x^2\right)-1=4\)
\(4\ge x^2+2\sqrt{\frac{y^2}{4}.1}+2\sqrt{\frac{1}{x^2}.x^2}-1\)
\(\Leftrightarrow4\ge x^2+y+1\Leftrightarrow3\ge x^2+y\)
hay \(3\ge x^2+\frac{y^2}{y}\ge2\sqrt{\frac{\left(xy\right)^2}{y}}\Leftrightarrow\sqrt{\frac{\left(xy\right)^2}{y}}\le\frac{3}{2}\)
Suy ra \(\frac{\left(xy\right)^2}{y}\le\frac{9}{4}\Rightarrow\left(xy\right)^2\le\frac{9y}{4}\Leftrightarrow xy\le\sqrt{\frac{9y}{4}}\) :v
Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)
\(\Leftrightarrow x^2+2\le3x\)
Hoàn toàn tương tự ta có \(y^2+2\le3y\)
Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)
\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)
Đặt \(a=x+y-1\Rightarrow1\le a\le3\)
\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)
\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)
\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)
\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Ta có:
x⁴ + 1/x⁴ = x⁴ + 2.x².1/x² + 1/x⁴ - 2.x².1/x²
= (x² + 1/x²)² - 2.x².1/x²
= 4² - 2
= 14
Ta có:
\(\dfrac{x^2+1}{x^2}=4\) (ĐK: \(x\ne0\))
\(\Rightarrow x^2+1+4x^2\)
\(\Rightarrow4x^2-x^2=1\)
\(\Rightarrow3x^2=1\)
\(\Rightarrow x^2=\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{\sqrt{3}}{3}\left(tm\right)\)
Thay vào biểu thức ta có:
\(\dfrac{x^4+1}{x^4}\)
\(=\dfrac{\left(\dfrac{\sqrt{3}}{3}\right)^4+1}{\left(\dfrac{\sqrt{3}}{3}\right)^4}\)
\(=\dfrac{\dfrac{9}{81}+1}{\dfrac{9}{81}}\)
\(=\dfrac{\dfrac{1}{9}+1}{\dfrac{1}{9}}\)
\(=\dfrac{10}{9}:\dfrac{1}{9}\)
\(=10\)