K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

loading... a) ∆ABC vuông tại A có AH là đường cao

⇒ AH² = BH . CH

= 9 . 16

= 144

⇒ AH = 12 (cm)

BC = BH + CH

= 9 + 16

= 25 (cm)

∆ABC vuông tại A có AH là đường cao

⇒ AB² = BH . BC

= 9 . 25

= 225

⇒ AB = 15 (cm)

AC² = CH . BC

= 16 . 25

= 400

⇒ AC = 20 (cm)

b) Do F là trung điểm AB

⇒ AF = AB : 2 = 15 : 2 = 7,5 (cm)

∆ACF vuông tại A

⇒ tanAFC = AC/AF = 20/7,5 = 8,3

⇒ ∠AFC ≈ 69⁰

c) Do AE ⊥ CF (gt)

⇒ AE là đường cao của ∆ACF

∆ACF vuông tại C có CE là đường cao

⇒ AC² = CE.CF (1)

∆ABC vuông tại A có AH là đường cao

⇒ AC² = BC.CH (2)

Từ (1) và (2) suy ra:

CE.CF = BC.CH

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

25 tháng 7 2023

Ai giúp em với ạ

25 tháng 7 2023

Ta có tam giác ABC vuông tại A nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Vậy ta có AH = HD.

Vì D là trung điểm của BC nên BD = CD.

Vì góc DE vuông góc với AC tại E nên tam giác ADE vuông góc tại E.

Vì F là điểm đối xứng của E qua D nên tam giác ADF cũng tại D.

Ta có:
- Tam giác ADE vuông tại E và tam giác ADF vuông tại D có cạnh chung AD.
- Tam giác ADE và tam giác ADF có cạnh AD bằng nhau (vì F là điểm đối xứng của E qua D).

Vậy tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.

Do đó, ta có AE = AF và DE = DF.

Vì M là trung điểm của HC nên ta có HM = MC.

Vì FM là đường trung tuyến của tam giác HAC nên ta có FM = \(\frac{1}{2}\)AC.

Ta cần chứng minh FM vuông góc với AM.

Ta có:
- Tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
- AE = AF và DE = DF.

Do đó, tam giác ADE và tam giác ADF là hai tam giác đồng dạng (theo nguyên tắc đồng dạng cận-cạnh-cạnh).

Do đó, ta có \(\frac{AE}{DE} = \frac{AF}{DF}\).

Vì AE = AF và DE = DF nên ta có \(\frac{AE}{DE} = \frac{AF}{DF} = 1\).

Vậy tam giác ADE và tam giác ADF là hai tam giác đồng dạng cân.

Do đó, ta có góc EAD = góc FAD và góc AED = góc AFD.

Vì góc EAD + góc AED = 90° (do tam giác ADE vuông góc tại E) nên góc FAD + góc AFD = 90°.

Do đó, ta có góc FAM = 90°.

Do đó, FM vuông góc với AM.

16 tháng 9 2017

có câu 2 câu đó là a và b  nhé bạn

Cho tam giác ABC vuông tại A,AH là đường cao,Trên tia đối của tia AH lấy điểm D sao cho AD = AH,Gọi E là trung điểm của HC,F là giao điểm của DE và AC,Chứng minh HF cắt CD tại trung điểm của CD,Chứng minh HF = 1/3CD,Gọi I là trung điểm của AH,Chứng minh EI vuông góc AB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

câu c nhé câu d bỏ

Cho tam giác ABC vuông tại A,AH là đường cao,Trên tia đối của tia AH lấy điểm D sao cho AD = AH,Gọi E là trung điểm của HC,F là giao điểm của DE và AC,Chứng minh HF cắt CD tại trung điểm của CD,Chứng minh HF = 1/3CD,Gọi I là trung điểm của AH,Chứng minh EI vuông góc AB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

10 tháng 11 2017

Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN