K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Tập hợp các số thực không phải là số vô tỉ chính là tập hợp \(\mathbb{Q}\) các số hữu tỉ.

1. Tập hợp số tự nhiên, kí hiệu NN={0, 1, 2, 3, ..}.2. Tập hợp số nguyên, kí hiệu là ZZ={…, -3, -2, -1, 0, 1, 2, 3, …}.Tập hợp số nguyên gồm các phân tử là số tự nhiên và các phân tử đối của các số tự nhiên.Tập hợp các số nguyên dương kí hiệu là N*3. Tập hợp số hữu tỉ, kí hiệu là QQ={ a/b;  a, b∈Z, b≠0}Mỗi số hữu tỉ có thể biểu diễn bằng một số thập phân hữu hạn hoặc vô...
Đọc tiếp

1. Tập hợp số tự nhiên, kí hiệu N

N={0, 1, 2, 3, ..}.

2. Tập hợp số nguyên, kí hiệu là Z

Z={…, -3, -2, -1, 0, 1, 2, 3, …}.

Tập hợp số nguyên gồm các phân tử là số tự nhiên và các phân tử đối của các số tự nhiên.

Tập hợp các số nguyên dương kí hiệu là N*

3. Tập hợp số hữu tỉ, kí hiệu là Q

Q={ a/b;  a, b∈Z, b≠0}

Mỗi số hữu tỉ có thể biểu diễn bằng một số thập phân hữu hạn hoặc vô hạn tuần hoàn.

4. Tập hợp số thực, kí hiệu là R

Một số được biểu diễn bằng một số thập phân vô hạn không tuần hoàn được gọi là một số vô tỉ. Tập hợp các số vô tỉ kí hiệu là I. Tập hợp số thực gồm các số hữ tỉ và các số vô tỉ.

= Q  I.

5. Một số tập hợp con của tập hợp số thực.

+ Đoạn [a, b] ={x ∈ R / a ≤ x ≤ b}

+ Khoảng (a; b) ={x ∈ R / a < x < b}

– Nửa khoảng [a, b) = {x ∈ R / a ≤ x < b}

– Nửa khoảng (a, b] ={x ∈ R / a < x ≤ b}

– Nửa khoảng [a; +∞) = {x ∈ R/ x ≥ a}

– Nửa khoảng (-∞; a] = {x ∈ R / x ≤a}

– Khoảng (a; +∞) = {x ∈ R / x >a}

– Khoảng (-∞; a) = {x ∈R/ x<a}.

 Luyện trắc nghiệmTrao đổi bài
3
3 tháng 8 2016

nè pn bị dảnh ak

3 tháng 8 2016

choán váng

18 tháng 5 2017

a) \(A\cap P=\left\{2\right\}\) , \(A\cap B=\varnothing\)

b) \(P\subset N\) , \(P\subset N\)* , \(N\)* \(\subset N\)

c) \(A\subset N\) , \(B\subset N\) , \(B\subset N\)*

15 tháng 4 2017

\(A\subset N\)

\(B\subset N\)

\(N^{\circledast}\subset N\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(A = \{ x \in \mathbb{N}|\;x < 2\}  = \{ 0;1\} \) và \(B = \{ x \in \mathbb{R}|\;{x^2} - x = 0\}  = \{ 0;1\} \)

Vậy A = B, A là tập con của tập B và ngược lại.

b) D là tập hợp con của C vì: Mỗi hình vuông đều là một hình thoi đặc biệt: hình thoi có một góc vuông.

\(C \ne D\) vì có nhiều hình thoi không là hình vuông, chẳng hạn:

c) \(E = ( - 1;1] = \left\{ {x \in \mathbb{R}|\; - 1 < x \le 1} \right\}\) và \(F = ( - \infty ;2] = \left\{ {x \in \mathbb{R}|\;x \le 2} \right\}\)

E là tập con của F vì \( - 1 < x \le 1 \Rightarrow x \le 2\) .

\(E \ne F\) vì \( - 3 \in F\)nhưng \( - 3 \notin E\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) A là tập hợp các số tự nhiên nhỏ hơn 5, khi đó \(0 \in A,2 \in A,3 \in A.\)

B là tập hợp các nghiệm thực của phương trình \({x^2} - 3x + 2 = 0\), khi đó \(1 \in B,2 \in B.\)

C là tập hợp các thứ trong tuần, khi đó chủ nhật \( \in C,\) thứ năm \( \in C.\)

b)

\(\begin{array}{l}0 \in \mathbb{N},\;2 \in \mathbb{N}, - 5 \notin \mathbb{N},\;\frac{2}{3} \notin \mathbb{N}.\\0 \in \mathbb{Z},\; - 5 \in \mathbb{Z},\frac{2}{3} \notin \mathbb{Z},\sqrt 2 \; \notin \mathbb{Z}.\\0 \in \mathbb{Q},\;\frac{2}{3} \in \mathbb{Q},\sqrt 2  \notin \mathbb{Q},\;\pi  \notin \mathbb{Q}.\\\frac{2}{3} \in \mathbb{R},\;\sqrt 2  \in \mathbb{R},e \notin \mathbb{R},\;\pi  \notin \mathbb{R}.\end{array}\)

9 tháng 6 2017

a) Phép cộng và phép trừ

b) Phép trừ

c) Phép trừ, phép nhân và phép chia

20 tháng 9 2018

a) Tập hợp các số hữu tỉ khác 0 tất cả các phép cộng, trừ, nhân , chia luôn thực hiện được

b) Tập hợp các số hữu tỉ dương : phép trừ không phải luôn thực hiện được

Ví dụ: (1/3) - (3/4) kết quả không phải là số hữu tỉ dương

c) Tập hợp các số hữu tỉ âm: phép trừ, nhân và chia không phải luôn luôn thực hiện được

Ví dụ: (-1/3) - (-3/4) kết quả không phải là số hữu tỉ âm

HQ
Hà Quang Minh
Giáo viên
9 tháng 10 2023

Các số \( - 1; - 2; - 3;...\) là các số nguyên âm.

Các số 0;1;2;3;... là các số tự nhiên.

\(\mathbb{Z}\) là tập hợp gồm các số tự nhiên và các số nguyên âm.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \({x^2} - 6 = 0 \Leftrightarrow x =  \pm \sqrt 6  \in \mathbb{R}\)

Vì \(\sqrt 6  \in \mathbb{R}\) và \( -\sqrt 6  \in \mathbb{R}\) nên \( A = \left\{ { \pm \sqrt 6 } \right\}\)

Nhưng \( \pm \sqrt 6  \notin \mathbb{Z}\) nên không tồn tại \(x \in \mathbb{Z}\) để \({x^2} - 6 = 0\)

Hay \(B = \emptyset \).