K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f} \Leftrightarrow \frac{1}{{d'}} = \frac{1}{f} - \frac{1}{d} = \frac{{d - f}}{{df}} \Leftrightarrow d' = \frac{{df}}{{d - f}}\)

b)

Ta có: \(\left\{ \begin{array}{l}df > 0\\d - f > 0,d \to {f^ + }\end{array} \right.\)

\(\begin{array}{l}\mathop {\lim }\limits_{d \to {f^ + }} \varphi (d) = \mathop {\lim }\limits_{d \to {f^ + }} \frac{{df}}{{d - f}} =  + \infty \end{array}\)

Ta có: \(\left\{ \begin{array}{l}df > 0\\d - f < 0,d \to {f^ - }\end{array} \right.\)

Do đó, \(\begin{array}{l}\mathop {\lim }\limits_{d \to {f^ - }} \varphi (d) = \mathop {\lim }\limits_{d \to {f^ - }} \frac{{df}}{{d - f}} =  - \infty \end{array}\)

Vì \(\begin{array}{l}\mathop {\lim }\limits_{d \to {f^ + }} \varphi (d)\ne \mathop {\lim }\limits_{d \to {f^ - }} \varphi (d)\end{array}\)

Vậy nên không tồn tại \(\begin{array}{l}\mathop {\lim }\limits_{d \to f} \varphi (d)  \end{array}\)

Giải thích ý nghĩa của các kết quả tìm được: Khi khoảng cách của vật tới thấu kính mà gần với tiêu cự thì khoảng cách ảnh của vật đến thấu kính ra xa vô tận nên lúc đó bằng mắt thường mình không nhìn thấy.

27 tháng 9 2017

a) Thấu kính hội tụ có tiêu cự f

Giải bài 7 trang 133 sgk Đại Số 11 | Để học tốt Toán 11

⇒ Ý nghĩa: Khi đặt vật nằm ngoài tiêu cự và tiến dần đến tiêu điểm thì cho ảnh thật ngược chiều với vật ở vô cùng.

Giải bài 7 trang 133 sgk Đại Số 11 | Để học tốt Toán 11

⇒ Ý nghĩa: Khi đặt vật nằm trong tiêu cự và tiến dần đến tiêu điểm thì cho ảnh ảo cùng chiều với vật và nằm ở vô cùng.

Giải bài 7 trang 133 sgk Đại Số 11 | Để học tốt Toán 11

⇒ Ý nghĩa : Khi vật được đặt ở xa vô cùng thì sẽ cho ảnh tại tiêu điểm.

1 tháng 1 2020

Đáp án C

Khi 0 < d < f, vật ở trong đoạn FO

 

Ảnh là ảo, cùng chiều, lớn hơn vật và nằm ngoài khoảng OF.

13 tháng 11 2019

Đáp án: A

Khi f < d < 2f, vật ở trong đoạn FI (hình vẽ)

dMHUgB6EoJ6f.png

Ảnh thật, ngược chiều, lớn hơn vật và nằm ngoài khoảng OI’.

21 tháng 12 2019

Đáp án A

Khi f < d < 2f, vật ở trong đoạn FI

Ảnh thật, ngược chiều, lớn hơn vật và nằm ngoài khoảng OI’

22 tháng 9 2017

Đáp án: C

Khi 0 < d < f, vật ở trong đoạn FO (hình vẽ)

YPoVHQbOVbHl.png

Ảnh là ảo, cùng chiều, lớn hơn vật và nằm ngoài khoảng OF.

12 tháng 6 2019

Đáp án D

Khi d > f, vật ngoài đoạn OI

Ảnh là thật, ngược chiều, nhỏ hơn vật

2 tháng 1 2020

Đáp án: D

Khi d > f, vật ngoài đoạn OI (hình vẽ).

AbD2ktGdMR7o.png

Ảnh là thật, ngược chiều, nhỏ hơn vật.

24 tháng 7 2019

Chọn C. Một thấu kính hội tụ có tiêu cự 10cm

Vì kính lúp là một thấu kính hội tụ và tiêu cự của thấu kính có số bội giác 2,5x là:

f = 25/2,5 = 10 cm

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\mathop {\lim }\limits_{d \to {f^ + }} g\left( d \right) = \mathop {\lim }\limits_{d \to {f^ + }} \frac{{df}}{{d - f}} = \mathop {\lim }\limits_{d \to {f^ + }} \left( {df} \right).\mathop {\lim }\limits_{d \to {f^ + }} \frac{1}{{d - f}}\)

Ta có: \(\mathop {\lim }\limits_{d \to {f^ + }} \left( {df} \right) = f\mathop {\lim }\limits_{d \to {f^ + }} d = {f^2};\mathop {\lim }\limits_{d \to {f^ + }} \frac{1}{{d - f}} =  + \infty \)

\( \Rightarrow \mathop {\lim }\limits_{d \to {f^ + }} g\left( d \right) = \mathop {\lim }\limits_{d \to {f^ + }} \frac{{df}}{{d - f}} =  + \infty \)

Ý nghĩa: Khi vật dần đến tiêu điểm từ phía xa thấu kính đến gần thấu kính thì khoảng cách từ ảnh đến thấu kính dần đến \( + \infty \).

b) \(\mathop {\lim }\limits_{d \to  + \infty } g\left( d \right) = \mathop {\lim }\limits_{d \to  + \infty } \frac{{df}}{{d - f}} = \mathop {\lim }\limits_{d \to  + \infty } \frac{{df}}{{d\left( {1 - \frac{f}{d}} \right)}} = \mathop {\lim }\limits_{d \to  + \infty } \frac{f}{{1 - \frac{f}{d}}} = \frac{f}{{1 - 0}} = f\)

Ý nghĩa: Khi khoảng cách từ vật đến thấu kính càng xa thì ảnh tiến dần đến tiêu điểm của ảnh \(\left( {F'} \right)\).