K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

\(1,=4x^2-1\\ 2,=\left(x-4\right)^2-9y^2=\left(x-3y-4\right)\left(x+3y-4\right)\)

24 tháng 11 2021

1)\(\left(2x+1\right)\left(2x-1\right)=\left(2x\right)^2-1^2=4x^2-1\)

2)\(x^2-8x-9y^2+16=\left(x^2-8x+16\right)-9y^2=\left(x^2-8x+4^2\right)-\left(3y\right)^2=\left(x-4\right)^2-\left(3y\right)^2=\left[\left(x-4\right)-3y\right]\left[\left(x-4\right)+3y\right]=\left(x-4-3y\right)\left(x-4+3y\right)\)

4 tháng 9 2016

a) x2-xz-9y2+3yz

=(x2-9y2)-(xz-3yz)

=(x-3y)(x+3y)-z(x-3y)

=(x-3y)(x+3y-z)

b)x3-x2-5x+125

=x3-6x2+25x+5x2-30x+125

=x(x2-6x+25)+5(x2-6x+25)

=(x+5)(x2-6x+25)

c.x3+2x2-6x-27

=x3+5x2+9x-3x2-15x-27

=x(x2+5x+9)-3(x2+5x+9)

=(x-3)(x2+5x+9)

d. 12x3+4x2-27x-9

=12x3+4x2-27x-9

=4x2(3x+1)-9(3x+1)

=(4x2-9)(3x+1)

=(2x-3)(2x+3)(3x+1)

e.x4-25x2+20x-4

=x4+5x3-2x2-5x2-25x+10+2x2+10x-4

=x2(x2+5x-2)-5(x2+5x-2)+2(x2+5x-2)

=(x2-5x+2)(x2+5x-2)

f.x2(x2-6)-x2+9

=x4+x3-3x2-x3-x2+3x-3x2-3x+9

=x2(x2+x-3)-x(x2+x-3)-3(x2+x-3)

=(x2-x-3)(x2+x-3)

5 tháng 9 2016

mà bạn ơi sao câu b bạn tách ra nv ?

6 tháng 10 2018

\(x^2-xz-9y^2+3yz\)

\(=\)\(\left(x^2-9y^2\right)-\left(xz-3yz\right)\)

\(=\)\(\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)

\(=\)\(\left(x-3y\right)\left(x+3y-z\right)\)

Chúc bạn học tốt ~ 

6 tháng 10 2018

\(x^2-xz-9y^2+3yz\)

\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)

\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y-z\right)\)

nhờ giải giupws em với a 1. Phân tích các đa thức sau thành nhân tử: a)     5x2 – 10xy b)    3x(x – y)  –  6(x – y) c)     2x(x – y) – 4y(y – x) d)    9x2 – 9y2 e)     x2 – xy – x + y f)      xy – xz – y + z 2. Phân tích các đa thức sau thành nhân tử:  a)a2 – 4b2                                        b) x2 – y2 + 6y -...
Đọc tiếp

nhờ giải giupws em với a

1. Phân tích các đa thức sau thành nhân tử:

a)     5x2 – 10xy

b)    3x(x – y)    6(x – y)

c)     2x(x – y) – 4y(y – x)

d)    9x2 – 9y2

e)     x2 – xy – x + y

f)      xy – xz – y + z

2. Phân tích các đa thức sau thành nhân tử:

 a)a2 – 4b2                                        b) x2 – y2 + 6y - 9                                         

c) (2a + b)2 – a2                     d) 16(x – 1)2 – 25(x + y)2

e)x2 + 10x + 25                f) 25x2 – 20xy + 4y2

      g)9x4 + 24x2 + 16             h) x3 – 125

      i)x6 – 1                            k) x3 + 15x2 + 75x + 125

3. Tìm x biết :

a) 3x2 + 8x = 0              b) 9x2 – 25 = 0          c) x3 – 16x = 0     d) x3 + x = 0.

4. Chứng minh rằng với mọi số nguyên a thì: a3 – a chia hết cho 6

 

1
19 tháng 12 2023

Bài `1`

\(a,5x^2-10xy=5x\left(x-2y\right)\\ b,3x\left(x-y\right)-6\left(x-y\right)=\left(x-y\right)\left(3x-6\right)\\ =3\left(x-y\right)\left(x-2\right)\\ c,2x\left(x-y\right)-4y\left(y-x\right)=2x\left(x-y\right)+4y\left(x-y\right)\\ =\left(x-y\right)\left(2x+4y\right)=2\left(x-y\right)\left(x+2y\right)\\ d,9x^2-9y^2=\left(3x\right)^2-\left(3y\right)^2=\left(3x-3y\right)\left(3x+3y\right)\\ f,xy-xz-y+z=\left(xy-xz\right)-\left(y-z\right)\\ =x\left(y-z\right)-\left(y-z\right)=\left(y-z\right)\left(x-1\right)\)

Bài `3`

\(a,3x^2+8x=0\\ \Leftrightarrow x\left(3x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{8}{3}\end{matrix}\right.\)

\(b,9x^2-25=0\\ \Leftrightarrow\left(3x\right)^2-5^2=0\\ \Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(c,x^3-16x=0\\ \Leftrightarrow x\left(x^2-16\right)=0\\ \Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

\(d,x^3+x=0\\ \Leftrightarrow x\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1\in\varnothing\\x=0\end{matrix}\right.\Rightarrow x=0\)

21 tháng 8 2021

\(x^2-11x+3\\ =\left(x^2-4x+4\right)-7x-1\\ =\left(x-2\right)^2-\left(\sqrt{7x+1}\right)^2\\ =\left(x-2-\sqrt{7x+1}\right)\left(x-2+\sqrt{7x+1}\right)\)

22 tháng 10 2021

PHU HUYNH

\(=x^2+x-6x+6\\ =x\left(x+1\right)-6\left(x+1\right)\\ =\left(x+1\right)\left(x+6\right)\)

20 tháng 4 2022

\(x^2-3x-4=x^2+x-4x-4=x\left(x+1\right)-4\left(x+1\right)=\left(x-4\right)\left(x+1\right)\)

20 tháng 4 2022

`x^2 - 3x - 4`

`<=> x(x - 3)-4`

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:
a. $5x^2-10xy=5x(x-2y)$

b. $3x(x-y)-6(x-y)=(x-y)(3x-6)=3(x-y)(x-2)$
c. $2x(x-y)-4y(y-x)=2x(x-y)+4y(x-y)=(x-y)(2x+4y)=2(x-y)(x+2y)$

d. $9x^2-9y^2=9(x^2-y^2)=9(x-y)(x+y)$

e. $x^2-xy-x+y=(x^2-xy)-(x-y)=x(x-y)-(x-y)=(x-y)(x-1)$

f. $xy-xz-y+z=(xy-y)-(xz-z)=y(x-1)-z(x-1)=(x-1)(y-z)$