K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_n} - {u_{n - 1}} = \left( { - 2n + 3} \right) - \left[ { - 2\left( {n - 1} \right) + 3} \right] =  - 2,\;\forall n \ge 2\).

Vậy \({u_n} =  - 2n + 3\) là một cấp số cộng với \({u_1} = 1\) và công sai \(d =  - 2\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_n} - {u_{n - 1}} = \left( {4n - 3} \right) - \left[ {4\left( {n - 1} \right) - 3} \right] = 4,\;\forall n \ge 2\).

Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng với số hạng đầu \({u_1} = 1\) và công sai \(d = 4\)

Số hạng tổng quát \({u_n} = 1 + 4\left( {n - 1} \right)\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Dãy số trên là cấp số cộng

Ta có:

\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = 3 - 2n\\ \Leftrightarrow {u_1} + nd - d = 3 - 2n\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = 3\\nd =  - 2n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d =  - 2\end{array} \right.\end{array}\)

b)    Dãy số trên là cấp số cộng

Ta có:

 \(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = \frac{{3n + 7}}{5}\\ \Leftrightarrow {u_1} + nd - d = \frac{{3n}}{5} + \frac{7}{5}\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = \frac{7}{5}\\nd = \frac{3}{5}n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\d = \frac{3}{5}\end{array} \right.\end{array}\)

c) Dãy số đã cho không là cấp số cộng

Ta có: \( u_{n+1} = 3^{n+1} = 3.3^n \)

Xét hiệu \( u_{n+1} – u_n = 3.3^n – 3^n = 2.3^n \) với n ∈ ℕ*

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Dãy số: 3; 7; 11; 15; 19; 23 là cấp số cộng có công sai \(d = 4\).

b) Ta có: \({u_{n + 1}} = 9\left( {n + 1} \right) - 9 = 9n + 9 - 9 = \left( {9n - 9} \right) + 9 = {u_n} + 9\).

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng có công sai \({\rm{d}} = 9\).

c) Ta có: \({v_{n + 1}} = a\left( {n + 1} \right) + b = an + a + b = \left( {an + b} \right) + a = {v_n} + a\).

Vậy dãy số \(\left( {{v_n}} \right)\) là cấp số cộng có công sai \({\rm{d}} = a\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_n} - {u_{n - 1}} = \left( {3n + 6} \right) - \left[ {3\left( {n - 1} \right) + 6} \right] = 3,\;\forall n \ge 2\)

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).

Chọn đáp án A.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_1} = 8;\;\;\;\;{u_2} = 13;\;\;\;\;\;{u_3} = 18;\;\;\;\;\;{u_4} = 23;\;\;\;\;\;{u_5} = 28\).

Ta có: \({u_n} - {u_{n - 1}} = 3 + 5n - \left[ {3 + 5\left( {n - 1} \right)} \right] = 5,\;\forall n \ge 2\).

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 8\) và công sai \(d = 5\).

Số hạng tổng quát: \({u_n} = 8 + 5\left( {n - 1} \right)\).

b) \({u_1} = 2;\;\;\;\;{u_2} = 8;\;\;\;\;{u_3} = 14;\;\;\;\;\;{u_4} = 20;\;\;\;\;\;{u_5} = 26\).

Ta có: \({u_n} - {u_{n - 1}} = 6n - 4 - \left[ {6\left( {n - 1} \right) - 4} \right] = 6,\;\forall n \ge 2\).

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2\) và công sai \(d = 6\).

Số hạng tổng quát: \({u_n} = 2 + 6\left( {n - 1} \right)\).

c) \({u_1} = 2;\;\;\;\;{u_2} = 4;\;\;\;\;\;{u_3} = 7;\;\;\;\;\;\;{u_4} = 11;\;\;\;\;\;\;\;{u_5} = 16\)

Ta có: \({u_n} - {u_{n - 1}} = n,\;\) n biến động.

Suy ra đây không phải là cấp số cộng.

d) \({u_1} = 2;\;\;\;\;{u_2} = 5;\;\;\;\;\;\;{u_3} = 8;\;\;\;\;\;\;{u_4} = 11;\;\;\;\;\;\;\;{u_5} = 14\)

Ta có: \({u_n} - {u_{n - 1}} = 3\).

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2\) và công sai \(d = 3\).

Số hạng tổng quát: \({u_n} = 2 + 3\left( {n - 1} \right),\;\forall n \ge 2\).

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

Ta có: 

\(u_n=u_1+\left(n-1\right)d\\ =4+\left(n-1\right)\cdot\left(-10\right)\\ =4-10n+10\\ =14-10n\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có: \({u_n} =  - 3 + \left( {n - 1} \right).5\)

b)    Ta có:

\(\begin{array}{l}492 =  - 3 + \left( {n - 1} \right).5\\ \Leftrightarrow n - 1 = 99\\ \Leftrightarrow n = 100\end{array}\)

492 là số hạng thứ 100 của cấp số cộng

c)    Ta có: \(300 =  - 3 + \left( {n - 1} \right).5 \Leftrightarrow n - 1 = 60,6\)

300 không là số hạng của cấp số cộng

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{2 \times {5^n}}}{{2 \times {5^{n - 1}}}} = \frac{{2 \times {5^n}}}{{2 \times {5^{n}.5^{- 1}}}} = 5,\;\forall n \ge 2\).

Vậy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân với \({u_1} = 10\) và công bội \(q = 5\).

21 tháng 9 2023

\(a,u_1;u_2=u_1+d;u_3=u_1+2d;u_4=u_1+3d;u_5=u_1+4d\\ b,u_n=u_1+\left(n-1\right)d\)