K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

X=>5/3√

20 tháng 7 2017

bn viết cách giải đc ko?

30 tháng 7 2016

bạn ơi ở đây toàn mấy người lp 8 trở xuống ko ak bạn nên vô trang loigiaihay để giải đáp tốt hơn nhé

3 tháng 2 2017

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

mk lấy trong trang này nè  https://sites.google.com/site/toanhoctoantap/kien-thuc-toan/mot-so-phuong-phap-giai-phuong-trinh-nghiem-nguyen     bn vào đó xem kĩ hơn

3 tháng 2 2017

éo hiểu

17 tháng 3 2023

*Sử dụng phương pháp chặn (hai đầu):

\(x\left(x^2+2x+4\right)=y^3-3\left(1\right)\)

\(\Leftrightarrow2x^2+4x+3=y^3-x^3\)

Ta có \(2x^2+4x+3=2\left(x+1\right)^2+1>0\)

\(\Rightarrow y^3-x^3>0\Rightarrow y^3>x^3\left(2\right)\)

Lại có: \(\left(x+2\right)^3-y^3=\left(x^3+6x^2+12x+8\right)-\left(x^3+2x^2+4x+3\right)=4x^2+8x+5=4\left(x+1\right)^2+1>0\)

\(\Rightarrow y^3< \left(x+2\right)^3\left(3\right)\)

Từ (2), (3) suy ra \(x^3< y^3< \left(x+2\right)^3\Rightarrow y^3=\left(x+1\right)^3\).

Thay vào (1) ta được:

\(x^3+2x^2+4x=\left(x+1\right)^3-3\)

\(\Leftrightarrow x^3+2x^2+4x=x^3+3x^2+3x+1-3\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Với \(x=2\Rightarrow y=3\)

Với \(x=-1\Rightarrow y=0\)

Vậy các nghiệm nguyên của pt (1) là \(\left(x;y\right)=\left(2;3\right),\left(-1;0\right)\)

 

6 tháng 3 2022

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra

20 tháng 5 2021

\(\left\{{}\begin{matrix}x^2-xy-2y^2=0\\3x+y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x\left(1-3x\right)-2\left(1-3x\right)^2=0\\y=1-3x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-14x^2+11x-2=0\\y=1-3x\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{7}\end{matrix}\right.\\y=1-3x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=\dfrac{1}{7}\end{matrix}\right.\end{matrix}\right.\)

Vậy...