K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

Tham khảo:

a) Xét (O) có 

ΔAEC nội tiếp đường tròn(A,E,C cùng thuộc (O))

AC là đường kính của (O)(gt)

Do đó: ΔAEC vuông tại E(Định lí)

\(\Rightarrow\)AE\(\perp\)EC tại E

\(\Rightarrow\)AE\(\perp\)BE tại E

hay \(\widehat{AEB}=90^0\)

Xét ΔAEB có \(\widehat{AEB}=90^0\)(cmt)

nên ΔAEB vuông tại E(Định nghĩa tam giác vuông)

Xét ΔAEB vuông tại E có \(\widehat{ABE}=45^0\)(gt)

nên ΔAEB vuông cân tại E(Định lí tam giác vuông cân)

\(\Rightarrow\)AE=EB(hai cạnh bên của ΔAEB vuông cân tại E)

b)

Ta có: EA\(\perp\)EB(cmt)

nên \(EA\perp EH\) tại E

Xét ΔEHB có \(EA\perp EH\) tại E(cmt)

nên ΔEHB vuông tại E(Định nghĩa tam giác vuông)

Ta có: ΔEHB vuông tại E(cmt)

mà EI là đường trung tuyến ứng với cạnh huyền BH(I là trung điểm của BH)

nên \(EI=\dfrac{BH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(IH=BI=\dfrac{BH}{2}\)(I là trung điểm của BH)

nên EI=IH=IB

Ta có: IH=IE(cmt)

nên I nằm trên đường trung trực của HE(Tính chất đường trung trực của một đoạn thẳng)

hay đường trung trực của HE đi qua trung điểm I của BH(đpcm)

c) Ta có: \(AE\perp EC\) tại E(cmt)

nên \(AE\perp BC\) tại E

Xét (O) có 

ΔADC nội tiếp đường tròn(A,D,C cùng thuộc đường tròn(O))

AC là đường kính của (O)(gt)

Do đó: ΔADC vuông tại D(Định lí)

\(\Rightarrow CD\perp AD\) tại D

hay \(CD\perp BA\) tại D

Xét ΔBAC có 

AE là đường cao ứng với cạnh BC(cmt)

CD là đường cao ứng với cạnh BA(cmt)

AE cắt CD tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

\(\Rightarrow\)BH là đường cao ứng với cạnh AC

hay \(BH\perp AC\)(đpcm)

4 tháng 10 2022

 bạn ơi phần "Do đó: ΔAEC vuông tại E(Định lí)" ở câu a là định lí nào vậy?

3 tháng 11 2020

Ớ thế phần C làm như thế nào

18 tháng 10 2019

Vì O là giao điểm ba đường trung trực của ∆ABC nên:

OA = OB = OC

Vậy (O; OA) đi qua ba điểm A, B, C.

a: D nằm trên trung trực của AB

=>DA=DB

=>ΔDAB cân tại D

E nằm trên trung trực của CA

=>EA=EC

=>ΔEAC cân tại E

b: O nằm trên trung trực của AB,AC

=>OA=OB=OC

=>(O;OA) đi qua A,B,C

18 tháng 5 2018

Từ giả thiết suy ra OA = OB = OC.

Vậy các điểm B và C có thuộc đường tròn tâm O bán kính OA.

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
25 tháng 5 2022

a. Vì D nằm trên đg trung trực của AB \(\Rightarrow BD=AD\Rightarrow\)△ABD cân tại D.

Vì E nằm trên đg trung trực của AC \(\Rightarrow AE=CE\Rightarrow\)△ACE cân tại E.

b. △ABC có: O là giao đg trung trực của AB và AC 

\(\Rightarrow\)O là tâm đường tròn ngoại tiếp tam giác.

\(\Rightarrow OA=OB=OC\) nên \(B,C\in\left(O,OA\right)\) hay đường tròn tâm O bán kính OA đi qua điểm B,C.

9 tháng 2 2019

giúp mình phần 4 với

24 tháng 2 2020

Ai làm giúp với =((