Bài 4: Cho tam giác DEF vuông tại D có đường cao DI. Tính độ dài DI biết: a) DE = 15 cm, DF =20cm b)DE = 12cm, EF =15 cm d) El cm, EF cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{DF}{EF}=\dfrac{4}{5}\)
\(\Leftrightarrow DF=\dfrac{4}{5}EF\)
\(\Leftrightarrow DF=24\left(cm\right)\)
\(\Leftrightarrow FE=30\left(cm\right)\)
\(\Leftrightarrow DI=14.4\left(cm\right)\)
Bài 1:
\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)
DH=15(cm)
\(OH=3\sqrt{15}\left(cm\right)\)
\(OC=\sqrt{OH^2+CH^2}=\sqrt{81+135}=6\sqrt{6}\left(cm\right)\)
\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)
a: Trực tâm là điểm D
b: EF=căn 3^2+4^2=5cm
c: DF=căn 10^2-6^2=8cm
Áp dụng định lí Pythagoras, ta có:
\(DE^2+DF^2=EF^2\\ DF^2=10^2-6^2\\ DF^2=100-36\\ DF^2=64\\ \Rightarrow DF=8\left(cm\right)\)
Theo định lý pitago ta có DE^2 + DF^2 = EF^2
=> 36 + DF^2 = 100
=> DF^2 = 100 - 36
=> DF^2 = 64
=> DF = 8
Giải
a) Chứng minh : ΔDEI = ΔDFI.
Xét ΔDEI và ΔDFI, ta có :
DE = DF (gt)
IE = IF ( DI là trung tuyến)
DI cạnh chung.
=> ΔDEI = ΔDFI (c – c – c)
b) Các góc DIE và góc DIF :
(ΔDEI = ΔDFI)
Mà : (E, I,F thẳng hàng )
=>
c) Tính DI :
IE = EF : 2 = 10 : 2 = 5cm
Xét ΔDEI vuông tại I, ta có :
DE2 = DI2 + IE2
=> DI2 = DE2 – IE2 =132 – 52 = 144
=> DI = 12cm.
phần a,b của bạn Thư làm đúng rồi nhưng phần c, ở cuối thay số nhầm
sửa lại đoạn cuối là: DI2 = DE2 - IE2 = 169 - 25 = 144 => DI = 12
a) Xét tam giác DEF vuông tại D có đường cao DI ta có:
\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)
\(\Rightarrow DI^2=\dfrac{DE^2DF^2}{DE^2+DF^2}\)
\(\Rightarrow DI^2=\dfrac{15^2\cdot20^2}{15^2+20^2}=144\)
\(\Rightarrow DI=12\left(cm\right)\)
b) Xét tam giác DEF vuông tại D có đường cao DI áp dụng Py-ta-go ta có:
\(DF^2=EF^2-DE^2\)
\(\Rightarrow DF^2=15^2-12^2=81\)
\(\Rightarrow DF=9\left(cm\right)\)
Ta có: \(DI=\sqrt{\dfrac{DF^2DE^2}{DF^2+DE^2}}\)
\(\Rightarrow DI=\sqrt{\dfrac{9^2\cdot12^2}{9^2+12^2}}=\dfrac{108}{15}\left(cm\right)\)