CMR nếu \(\frac{a}{b}=\frac{b}{d}\Rightarrow\frac{a^2+b^2}{b^2+d^2}\)= \(\frac{a}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Còn nha. Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}^{\left(1\right)}\)
Lại có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}^{\left(2\right)}\)
Từ (1) và (2) => đpcm
CMR:a2+b2/c2+d2=ab/cd=>a/b=c/d
Bài làm
a2+b2/c2+d2=ab/cd
=>(a2+b2)cd=>ab(c2+d2)
<=>a2(cd)+b2(cd)-abc2-abc2=0
<=>a2cd-abc2+b2cd-abc2=0
<=>ac(ad-bc)+bd(bc-ad)=0
<=>ac(ad-bc)-bd(bc-ad)=0
<=>(ac-bd)(ac-bd)=0
=>\(\orbr{\begin{cases}ad-bc=0\\ac-bd=0\end{cases}}\)
=>\(\orbr{\begin{cases}ad=bc\\ac=bd\end{cases}}\)
=>\(\orbr{\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}}\)=>ĐPCM
Từ \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Vậy \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) ( đpcm )
Bài 1:
Cho a,b,c,d là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1+1+1\right)\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)
Cần chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=3\) (đúng)
Khi a=b=c
em gửi bài qua fb của thầy nhé thầy HD giải cho, tìm fb của thầy qua sđt: 0975705122
Ta có :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\)( 1 )
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 3 )
TH2 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\)( 4 )
Từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\)
TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2b}{2c}=\frac{b}{c}\)( 5 )
\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2a}{2d}=\frac{a}{d}\)( 6 )
Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\)hay \(\frac{a}{b}=\frac{d}{c}\)
Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)
\(\frac{a}{b}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2\)\(=\frac{a^2+b^2}{b^2+d^2}\)\(\)
Ta có: \(\frac{a^2+b^2}{b^2+d^2}\)\(=\left(\frac{a}{b}\right)^2\)
\(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{d}=\frac{a}{d}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)