K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(u_n\in Z\Leftrightarrow n+4⋮n+1\)

=>n+1+3 chia hết cho n+1

=>n+1 thuộc Ư(3)

mà n+1>1 với n>0

nên n+1=3

=>n=2

=>Chọn C

19 tháng 9 2023

\(u_n=\dfrac{n+4}{n+1}\in Z\)

\(\Leftrightarrow n+4⋮n+1\)

\(\Leftrightarrow n+4-\left(n+1\right)⋮n+1\)

\(\Leftrightarrow n+4-n-1⋮n+1\)

\(\Leftrightarrow3⋮n+1\)

\(\Leftrightarrow n+1\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow n+1\in\left\{-2;0;-4;2\right\}\)

\(\Rightarrow\left(u_n\right)\)có 4 số hạng nguyên \(\rightarrow Chọn\) \(D\)

23 tháng 10 2023

\(u_n=1\)

=>\(n^2-10n+10=1\)

=>\(n^2-10n+9=0\)

=>(n-1)(n-9)=0

=>\(\left[{}\begin{matrix}n-1=0\\n-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=9\end{matrix}\right.\)

Vậy: Có 2 giá trị của dãy (Un) cùng bằng 1

=>Chọn  B

un=1

=>n^2-10n+9=0

=>(n-1)(n-9)=0

=>n=1 hoặc n=9

=>Chọn B

19 tháng 9 2023

un =1 

=> n^2 -10n+9=0

=>(n=1)(n-9)=0

=>n=1 hoặc n=9

=>chọn B

18 tháng 11 2023

Để \(u_n\) nguyên thì \(n^2+3n+7⋮n+1\)

=>\(n^2+n+2n+2+5⋮n+1\)

=>\(5⋮n+1\)

=>\(n+1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{0;-2;4;-6\right\}\)

Vậy: \(u_n\) có 4 số hạng nhận giá trị nguyên

18 tháng 11 2023

u_n chỉ có 1 số hạng nhận giá trị nguyên.

Để \(U_n\) có chữ số tận cùng là 9 thì \(4^n+3\) có chữ số tận cùng là 9

=>\(4^n\) có chữ số tận cùng là 6

=>\(n=4k+2\left(k\in N\right)\)

Để \(U_n< 10000\) thì \(4^n+3< 10000\)

=>\(4^n< 9997\)

=>\(n< log_49997\simeq6,6\)

mà n nguyên dương và n chia 4 dư 2

nên \(n\in\left\{2;6\right\}\)

=>Có 2 số hạng trong dãy \(\left(U_n\right)\) thỏa mãn

19 tháng 9 2023

21 số hạng

19 tháng 9 2023

1 số

6:

\(u_n=8+7\left(n-1\right)=7n+1\)

7: Đặt un=7/12

=>\(\dfrac{2n+5}{5n-4}=\dfrac{7}{12}\)

=>35n-28=24n+60

=>11n=88

=>n=8

=>Đây là số hạng thứ 8

8: \(\dfrac{2n}{n^2+1}=\dfrac{9}{41}\)

=>9n^2+9=82n

=>9n^2-82n+9=0

=>(9n-1)(n-9)=0

=>n=9(nhận) hoặc n=1/9(loại)

=>Đây là số thứ 9

10B

9D

8 tháng 2 2022

Ủa lớp 9 học lim rồi á?

NV
9 tháng 8 2021

\(u_{n+1}=\dfrac{3}{2}\left(u_n-\dfrac{n+4}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{3}{2}\left(u_n-\dfrac{3}{n+1}+\dfrac{2}{n+2}\right)\)

\(\Leftrightarrow u_{n+1}-\dfrac{3}{n+1+1}=\dfrac{3}{2}\left(u_n-\dfrac{3}{n+1}\right)\)

Đặt \(u_n-\dfrac{3}{n+1}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=u_1-\dfrac{3}{2}=-\dfrac{1}{2}\\v_{n+1}=\dfrac{3}{2}v_n\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSN với công bội \(\dfrac{3}{2}\)

\(\Rightarrow v_n=-\dfrac{1}{2}\left(\dfrac{3}{2}\right)^{n-1}\)

\(\Rightarrow u_n=-\dfrac{1}{2}\left(\dfrac{3}{2}\right)^{n-1}+\dfrac{3}{n+1}\)

Để \(u_n\) có tận cùng là 7 thì \(6^n+1\) có tận cùng là 7

=>\(6^n\) có chữ số tận cùng là 6

=>\(n\in Z^+\)

\(69000< U_n< 960000\)

=>\(69000< 6^n+1< 960000\)

=>\(68999< 6^n< 959999\)

=>\(log_668999< n< log_6959999\)

=>\(6,22< n< 7,68\)

mà n là số tự nhiên

nên n=7

=>Có 1 số hạng duy nhất thỏa mãn