a) Trong các cách viết: \(\sqrt 2 \in \mathbb{Q}; \pi \in \mathbb{I}; 15 \in \mathbb{R}\), cách viết nào đúng?
b) Viết số đối của các số: \(5,08(299); - \sqrt 5 \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt 3 \in \mathbb{Q}\) sai.
Sửa lại: \(\sqrt 3 \notin \mathbb{Q}\)
b) \(\sqrt 3 \in \mathbb{R}\) đúng.
c) \(\frac{2}{3} \notin \mathbb{R}\) sai.
Sửa lại: \(\frac{2}{3} \in \mathbb{R}\)
d) \( - 9 \in \mathbb{R}\) đúng.
\(a)\sqrt 2 \approx 1,1412... \in I;\,\,\,\,\,b)\sqrt 9 = 3 \notin I;\,\,\,\,c)\,\pi \approx 3,141... \in I;\,\,\,\,\,d)\sqrt 4 = 2 \in \mathbb{Q}\)
Vậy các phát biểu a,c,d đúng.
a) Mệnh đề sai, vì chỉ có \(x = - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.
b) Mệnh đề đúng, vì \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.
Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”
c) Mệnh đề sai, vì có \(a = - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}} = 2 \ne a\)
Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}} \ne a\)”.
a) Nếu \(a \in \mathbb{N}\) thì \(a \in \mathbb{Q}\) => Đúng
b) Nếu \(a \in \mathbb{Z}\) thì \(a \in \mathbb{Q}\) => Đúng
c) Nếu \(a \in \mathbb{Q}\) thì \(a \in \mathbb{N}\) => Sai. Vì a là số hữu tỉ thì chưa chắc a là số tự nhiên.
d) Nếu \(a \in \mathbb{Q}\) thì \(a \in \mathbb{Z}\) => Sai. Vì a là số hữu tỉ thì chưa chắc a là số nguyên.
e) Nếu \(a \in \mathbb{N}\) thì \(a \notin \mathbb{Q}\) => Sai. Vì các số tự nhiên là các số hữu tỉ
g) Nếu \(a \in \mathbb{Z}\) thì \(a \notin \mathbb{Q}\) => Sai. Vì các số nguyên là các số hữu tỉ
a) Nửa khoảng \(\left( {\left. { - 2\pi ;2\pi } \right]} \right.\)
b) \(\left\{ {x \in \mathbb{R}|\;\left| x \right| \le \sqrt 3 } \right\} = \left\{ {x \in \mathbb{R}|\; - \sqrt 3 \le x \le \sqrt 3 } \right\}\)
Đoạn \(\left[ {\left. { - \sqrt 3 ;\sqrt 3 } \right]} \right.\)
c) Khoảng \(\left( { - \infty ;0} \right)\)
d) \(\left\{ {x \in \mathbb{R}|\;1 - 3x \le 0} \right\} = \left\{ {x \in \mathbb{R}|\;x \ge \frac{1}{3}} \right\}\)
Nửa khoảng \(\left. {\left[ {\frac{1}{3}; + \infty } \right.} \right)\)
a) Tập hợp \(\mathbb{N}\) chứa số 0 còn tập hợp \({\mathbb{N}^*}\) không chứa số 0
b) C = {1; 2; 3; 4; 5}
a: Khác nhau ở chỗ N có số 0; còn N* thì không có số 0
b: C={1;2;3;4;5}
Viết các tập hợp sau bằng cách liệt kê các phần tử :
a) A = {x∈Nx∈N | 18<x<2118<x<21}
b) B = {x∈N⊛x∈N⊛ | x<4x<4}
c) C = {x∈Nx∈N | 35≤x≤3835≤x≤38}
a, A = { 19;20 }
b, B = { 1;2;3 }
c, C = { 35;36;37;38 }
a) Khoảng \(\left( { - 2;3} \right)\)
b) Đoạn \(\left[ {1;10} \right]\)
c) Nửa khoảng \(\left( {\left. { - 5;\sqrt 3 } \right]} \right.\)
d) Nửa khoảng \(\left. {\left[ {\pi ;4} \right.} \right)\)
e) Khoảng \(\left( { - \infty ;\frac{1}{4}} \right)\)
g) Nửa khoảng \(\left[ {\left. {\frac{\pi }{2}; + \infty } \right)} \right.\)
a) Ta có: \(\sqrt 2 \notin \mathbb{Q};\pi \in \mathbb{I};15 \in \mathbb{R}\)
Vậy cách viết \(\pi \in \mathbb{I}; 15 \in \mathbb{Q}\) là đúng
b) Số đối của 5,08(299) là -5,08(299)
Số đối của -\(\sqrt 5 \) là \(\sqrt 5 \)