Cầu Long Biên bắc qua sông Hồng ở Thủ đô Hà Nội gợi nên hình ảnh tam giác ABC có sự đối xứng và cân bằng.
Tam giác ABC như vậy gọi là tam giác gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét tứ giác MNPQ có
G là trung điểm của đường chéo MP(gt)
G là trung điểm của đường chéo NQ(gt)
Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b)
Xét ΔABC có
BM là đường trung tuyến ứng với cạnh AC(gt)
CN là đường trung tuyến ứng với cạnh AB(gt)
BM cắt CN tại G(gt)
Do đó: G là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)
Suy ra: \(MG=\dfrac{1}{3}MB;BG=\dfrac{2}{3}MB;NG=\dfrac{1}{3}NC;CG=\dfrac{2}{3}NC\)(1)
Ta có: G là trung điểm của MP(gt)
nên MG=GP
mà \(MG=\dfrac{1}{3}MB\)
nên \(MG=GP=\dfrac{1}{3}MB\)
Ta có: MG+GP=MP(G nằm giữa M và P)
nên \(MP=\dfrac{1}{3}MB+\dfrac{1}{3}MB=\dfrac{2}{3}MB\)(1)
Ta có: G là trung điểm của NQ(gt)
nên \(GN=GQ=\dfrac{1}{3}NC\)
Ta có: NG+GQ=NQ(G là trung điểm của NQ)
nên \(NQ=\dfrac{1}{3}NC+\dfrac{1}{3}NC=\dfrac{2}{3}NC\)(2)
Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
mà AB=AC(ΔBAC cân tại A)
nên AN=NB=AM=MC
Xét ΔAMB và ΔANC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}\) chung
AM=AN(cmt)
Do đó: ΔAMB=ΔANC(c-g-c)
Suy ra: BM=CN(hai cạnh tương ứng)(3)
Từ (1), (2) và (3) suy ra NQ=MP
Hình bình hành MNPQ có NQ=MP(cmt)
nên MNPQ là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi
Bài làm
a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )
Nên Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC
vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)
Xét tam giác AMB vuông tại M có:
AM2 + BM2 = AB2
AM2 + 32 = 52
AM2 + 9 = 25
AM2 = 25 - 9 =16
\(\Rightarrow\)AM= \(\sqrt{16}=4\)
Vậy S ABC = \(\frac{1}{2}AM.BC\)= \(\frac{1}{2}4.6=12\)
b/ Xét tứ giác AMCN có :
OA=OC (gt)
OM=ON ( N đối xứng với M qua O )
\(\Rightarrow\)Tứ giác AMCN là hình bình hành
Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0
Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật
C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )
Nếu tam giác ABC vuông cân tại A thì có :
AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC
Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A
a) Tứ giác MNPQ là hình bình hành
Chứng minh
Hai trung tuyến BM, CN căt nhau tại G
=> G là trọng tâm tam giác ABC
=> BP=PG=MG, QC=QG=NG
=> G là trung điểm NQ và G là trung điểm MP mà NQ, MP là hai dduownff chéo tứ giác MNPQ
=> MNPQ là hình bình hành
b) Tam giác ABC cân tại A'
=> AG vuông BC (1)
Q là trung điểm GC, P là trung điểm GB
=> PQ là đường trung bình tam giác ABC
=> PQ //BC (2)
NP là đường trung bình tam giác ABG
=> NP//AG (3)
(1), (2), (3) => PQ vuông NP
=> NMQP là hình chữ nhật
câu b mk có cách khác nè
t.g BNC= t.g CMB (c-g-c)
=>CN=BM
ta có NQ=1/2 CN
MP= 1/2 BM
=> NQ=MP
lại có MNQP là hbh
=> MNQP là hcn
1: Xét tứ giác AHCE có
I là trung điểm của AC
I là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{HAC}=90^0\)
nên AHCE là hình chữ nhật
Suy ra: AC=HE
a) Ta có: M là trung điểm của BC(gt)
nên \(BM=CM=\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)
Ta có: ΔABC cân tại A(gt)
mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao ứng với cạnh đáy BC(Định lí tam giác cân)
\(\Rightarrow AM\perp BC\)
Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AM^2=AB^2-BM^2=5^2-3^2=16\)
hay AM=4(cm)
Xét ΔABC có AM là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AM\cdot BC}{2}=\dfrac{4\cdot6}{2}=\dfrac{24}{2}=12cm^2\)
Vậy: Diện tích tam giác ABC là 12cm2
b) Xét tứ giác AMCN có
O là trung điểm của đường chéo AC(gt)
O là trung điểm của đường chéo MN(M và N đối xứng nhau qua O)
Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AMCN có \(\widehat{AMC}=90^0\)(\(AM\perp BC\))
nên AMCN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Hình chữ nhật AMCN trở thành hình vuông khi AM=CM
mà \(CM=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)
Xét ΔABC có
AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
\(AM=\dfrac{BC}{2}\)(cmt)
Do đó: ΔABC vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(\widehat{BAC}=90^0\)
Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\) thì AMCN là hình vuông
Tam giác ABC là tam giác cân.