chung to rang: ( abc- cba ) chia het cho 99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề rùi
abc-cba chia het cho 99 moi đúng
Ta có
100a+10b+c-100c+10b+a
=100a+c-100c+a
=99a-99c=99(a-c)
Chia hết cho 99
Ta có:
\(\overline{abcd}\text{⋮}99\)
\(\Rightarrow\left(100\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\left(99\overline{ab}+\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\left[99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\right]\text{⋮}99\)
Vì \(99\overline{ab}\text{⋮}99\) và \(\left[99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\right]\text{⋮}99\)
nên \(\left(\overline{ab}+\overline{cd}\right)\text{⋮}99\) (đpcm)
Điều ngược lại:
\(\left(\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\left(99\overline{ab}+\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\left(100\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\overline{abcd}\text{⋮}99\) (đpcm)
Câu hỏi của Nguyễn Khánh Tâm - Toán lớp 6 - Học toán với OnlineMath
= (1+ 3 + 32 + 33) +...+ (396 + 397 + 398 + 399)
= 40 + ...+ 396( 1 + 3 + 32 + 33)
= 40 +...+396. 40
= 40( 1 +...+396) : hết cho 40
a có : abc chia hết cho 21
=> 100a+10b+c chia hết cho 21
=> 84a+16a+10b + c chia hết cho 21
=> 16a+10b+c chia hết cho 21
=> 64a+40b+4c chia hết cho 21
=> 63a+a+42b-2b+4c chia hết cho 21
=> a-2b+4c chia hết cho 21
HT
nếu bạn ko giúp ng khác thì cũng đừng mong đợi rằng họ sẽ giúp bạn
Ta có : abc chia hết cho 21
=> 100a+10b+c chia hết cho 21
=> 84a+16a+10b + c chia hết cho 21
=> 16a+10b+c chia hết cho 21
=> 64a+40b+4c chia hết cho 21
=> 63a+a+42b-2b+4c chia hết cho 21
=> a-2b+4c chia hết cho 21
HT
Ta có:
abc \(=\) \(100a+10b+c\)
\(=\)\(100a-8b+10b-42b+c+63c+84a+42b-63c\)
\(=\)\(16a-32b+64c+84a+42b-63c\)
\(=\)\(16\left(a-2b+4c\right)+84a+42b-63c\)
Áp dụng tính chất chia hết của tổng, ta có:
\(\hept{\begin{cases}abc⋮21\\84a+42b-63c⋮21\end{cases}\Leftrightarrow\left(a-2b+4c\right)⋮21}\)
abc - cba
= 100a + 10b + c - 100c - 10b - a
= 99a - 99c
= 99(a - c)
Vì 99 chia hết cho 99 nên 99(a - c) chia hết cho 99 hay abc - cba chia hết cho 99
Vậy...
abc - cba
= 100a + 10b + c - 100c - 10b - a
= 99a - 99c
= 99(a - c)
Vì 99 chia hết cho 99 nên 99(a - c) chia hết cho 99 hay abc - cba chia hết cho 99
Vậy abc-cba chia het cho 99
Ta có : abc - cba = 100a + 10b + c - 100c -10b - a = ( 100a - a ) + ( 10b - 10b ) - (100c - c )= 99a - 99c = 99. ( a - c ) chia het cho 99
Nguyễn Đăng Mạnh Cường
A=100a+10b+c-(100c+10b+a)= 99a-99c=99(a-c)
A/99= a-c
Vậy A chia hết cho 99