K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 1 2022

Theo cách dựng ta có CE vừa là đường cao, vừa là phân giác trong tam giác CDK

\(\Rightarrow\Delta CDK\) cân tại C

\(\Rightarrow DC=CK\)

Tương tự ta có: \(BM=DB\)

Mặt khác theo định lý phân giác: \(\dfrac{AB}{AC}=\dfrac{DB}{DC}\Rightarrow AB.DC=AC.DB\)

\(\Rightarrow AB.DC-AC.DB=0\)

Dễ dàng chứng minh bài toán quen thuộc: \(AD^2=AB.AC-BD.DC\) 

\(\Rightarrow AD^2=\left(AM-DB\right)\left(AK+DC\right)-DB.DC\)

\(=AM.AK+AM.DC-DB.AK-DB.DC-DB.DC\)

\(=AM.AK+DC\left(AM-DB\right)-DB\left(AK+DC\right)\)

\(=AM.AK+DC.AB-DB.AC\)

\(=AM.AK\)

\(\Rightarrow AK=\dfrac{AD^2}{AM}=4\)

NV
18 tháng 1 2022

undefined

a: Xét ΔADI vuông tại D và ΔAHI vuông tại H có

AI chung

\(\widehat{DAI}=\widehat{HAI}\)

Do đó: ΔADI=ΔAHI

=>AD=AH

mà AD=AB

nên AH=AB

Xét ΔABK vuông tại B và ΔAHK vuông tại H có

AB=AH

AK chung

DO đó: ΔABK=ΔAHK

b: ΔAHK=ΔABK

=>\(\widehat{HAK}=\widehat{BAK}\)

=>AK là phân giác của \(\widehat{BAH}\)

=>\(\widehat{HAK}=\dfrac{1}{2}\cdot\widehat{BAH}\)

\(\widehat{IAK}=\widehat{IAH}+\widehat{HAK}\)

\(=\dfrac{1}{2}\cdot\widehat{DAH}+\dfrac{1}{2}\cdot\widehat{BAH}\)

\(=\dfrac{1}{2}\cdot\left(\widehat{DAH}+\widehat{BAH}\right)=\dfrac{1}{2}\cdot90^0=45^0\)

24 tháng 11 2023

a: Xét ΔABM vuông tại B và ΔADN vuông tại D có

AB=AD

BM=DN

Do đó: ΔABM=ΔADN

b: ΔABM=ΔADN

=>AM=AN và \(\widehat{MAB}=\widehat{NAD}\)

\(\widehat{MAB}+\widehat{DAM}=\widehat{BAD}=90^0\)

mà \(\widehat{MAB}=\widehat{NAD}\)

nên \(\widehat{DAM}+\widehat{DAN}=90^0\)

=>\(\widehat{MAN}=90^0\)

Xét ΔAMN có AM=AN và \(\widehat{MAN}=90^0\)

nênΔAMN vuông cân tại A

d: ΔAMN cân tại A

mà AI là đường phân giác

nên I là trung điểm của MN và AI\(\perp\)MN tại I

=>AP\(\perp\)MN tại I

Xét ΔPNM có

PI là đường cao

PI là đường trung tuyến

Do đó: ΔPNM cân tại P

=>PN=PM

=>PM=PD+DN=PD+BM

13 tháng 10 2023

a: Xét ΔADM vuông tại D và ΔAHM vuông tại H có

AM chung

\(\widehat{DMA}=\widehat{HMA}\)

Do đó: ΔADM=ΔAHM

=>AD=AH

mà AD=AB

nên AH=AB

b: Xét ΔAHN vuông tại H và ΔABN vuông tại B có

AN chung

AH=AB

Do đó: ΔAHN=ΔABN

c: \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}\)

\(=\dfrac{1}{2}\left(\widehat{DAH}+\widehat{BAH}\right)\)

\(=\dfrac{1}{2}\cdot90^0=45^0\)