K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2023

Trước tiên ta cần chứng minh : \(1^2+n^2+\dfrac{n^2}{\left(n+1\right)^2}\text{=}\left(n+1-\dfrac{n}{n+1}\right)^2\)

\(\Leftrightarrow2.\left(\dfrac{n\left(n+1\right)}{n+1}-\dfrac{n}{n+1}-\dfrac{n^2}{n+1}\right)\text{=}0\)

\(\Leftrightarrow2.0\text{=}0\left(LĐ\right)\)

Ta có : \(E\text{=}\sqrt{1+2007^2+\dfrac{2007^2}{2008^2}}+\dfrac{2007}{2008}\)

Với bổ đề trên thì :

\(E\text{=}\sqrt{\left(2007+1-\dfrac{2007}{2008}\right)^2}+\dfrac{2007}{2008}\)

\(E\text{=}2008+\dfrac{2007}{2008}-\dfrac{2007}{2008}\)

\(E\text{=}2008\)

Sorry thiếu với \(\forall m\inℝ\)

với cả  : P(x) = ax2 + bx +c , a khác 0

Ta có: \(A=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\)

\(=1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)\)

\(=\dfrac{2009}{1}+\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2008}\)

\(=2009\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2008}\right)\)

cảm ơn ^^

\(=\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1\)

\(=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2008}+\dfrac{2009}{2009}\)

\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2009}\right)\)

24 tháng 1 2022

Thank youyeu

AH
Akai Haruma
Giáo viên
15 tháng 11 2017

Lời giải:

Đặt \(t=\frac{a_1}{a_2}=\frac{a_2}{a_3}.....=\frac{a_{2008}}{a_1}\)

Theo tính chất dãy tỉ số bằng nhau:

\(t=\frac{a_1+a_2+....+a_{2008}}{a_2+2_3+...+a_{2008}+a_1}=\frac{a_1+a_2+...+a_{2008}}{a_1+a_2+...+a_{2008}}=1\)

Do đó:

\(\left\{\begin{matrix} a_1=a_2\\ a_2=a_3\\ .....\\ a_{2007}=a_{2008}\\ a_{2008}=a_1\end{matrix}\right.\) \(\Leftrightarrow a_1=a_2=....=a_{2007}=a_{2008}=k\)

Khi đó:

\(N=\frac{a_1^2+a_2^2+...+a^2_{2007}+a^2_{2008}}{(a_1+a_2+...+a_{2008})^2}=\frac{\underbrace{k^2+k^2+....+k^2}_{2008}}{\underbrace{(k+k+....+k)^2}_{2008}}\)

\(\Leftrightarrow N=\frac{2008k^2}{(2008k)^2}=\frac{1}{2008}\)

Vậy \(N=\frac{1}{2008}\)

\(C=\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2007}-\sqrt{x+2008}}{-1}\)

\(=-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{x+2007}+\sqrt{x+2008}\)\(=-\sqrt{x}+\sqrt{x+2008}\)

\(C=-\sqrt{\sqrt[2007]{2008}}+\sqrt{\sqrt[2007]{2008}+2008}\)