K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Xét tam giác vuông \(PQR\) có:

\(\widehat P + \widehat Q + \widehat R = 180^\circ  \Leftrightarrow \widehat P + 90^\circ  + 42^\circ  = 180^\circ  \Rightarrow \widehat P = 180^\circ  - 90^\circ  - 42^\circ  = 48^\circ \)

Xét tam giác vuông \(UVT\) có:

\(U{V^2} = U{T^2} + V{T^2} \Leftrightarrow {6^2} = U{T^2} + {4^2} \Rightarrow U{T^2} = {6^2} - {4^2} = 20 \Rightarrow UT = 2\sqrt 5 \)

Xét tam giác vuông \(DEF\) có:

\(E{F^2} = D{E^2} + D{F^2} \Leftrightarrow E{F^2} = {9^2} + {12^2} \Rightarrow E{F^2} = 225 \Rightarrow EF = 15\)

Xét tam giác vuông \(MNK\) có:

\(K{N^2} = K{M^2} + M{N^2} \Leftrightarrow {9^2} = K{M^2} + {6^2} \Rightarrow K{M^2} = {9^2} - {6^2} = 45 \Rightarrow KM = 3\sqrt 5 \)

Xét tam giác vuông \(IGH\) có:

\(I{H^2} = H{G^2} + I{G^2} \Leftrightarrow I{H^2} = 7,{5^2} + {10^2} \Rightarrow I{H^2} = 156,25 \Rightarrow IH = 12,5\)

- Xét \(\Delta ABC\) và \(\Delta QPR\) có:

\(\widehat B = \widehat P = 48^\circ \) (chứng minh trên)

\(\widehat A = \widehat Q = 90^\circ \)

Do đó, \(\Delta ABC\backsim\Delta QPR\) (g.g)

- Xét \(\Delta UTV\) và \(\Delta KMN\) có:

\(\widehat T = \widehat M = 90^\circ \)

\(\frac{{UT}}{{KM}} = \frac{{2\sqrt 5 }}{{3\sqrt 5 }} = \frac{2}{3};\frac{{VT}}{{MN}} = \frac{4}{6} = \frac{2}{3}\)

Do đó, \(\Delta UTV\backsim\Delta KMN\) (c.g.c)

- Xét \(\Delta DEF\) và \(\Delta GHI\) có:

\(\widehat D = \widehat G = 90^\circ \)

\(\frac{{HG}}{{DE}} = \frac{{7,5}}{9} = \frac{5}{6};\frac{{IG}}{{DF}} = \frac{{10}}{{12}} = \frac{5}{6}\)

Do đó, \(\Delta DEF\backsim\Delta GHI\) (c.g.c).

19 tháng 9 2018

Trong hình bên có 3 cặp tam giác đồng dạng là BHA và BAC; CHA và CAB; HAB và HCA.

27 tháng 1 2024

Ta có:

AC/BC = 3/4,5 = 2/3

DE/EF = 2/3

⇒ AC/BC = DE/EF

∆ABC và ∆DFE có:

AC/BC = DE/EF = 2/3

∠BAC = ∠EDF = 90⁰

⇒ ∆ABC ∽ ∆DFE (cạnh huyền - cạnh góc vuông)

HQ
Hà Quang Minh
Giáo viên
28 tháng 1 2024

Tam giác ABC và tam giác DEF có:

\( \widehat A = \widehat D = 90^0 \)

\( \frac {AC}{DE} = \frac {BC}{EF} = \frac {3}{2} \)

\( \Rightarrow \Delta ABC \backsim \Delta DFE (ch - cgv) \)

30 tháng 9 2018

a) ΔABC Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔHBA vì Â = Ĥ = 90º, B̂ chung

ΔABC Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔHAC vì Â = Ĥ = 90º, Ĉ chung

ΔHBA Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔHAC vì cùng đồng dạng với ΔABC.

b) + ΔABC vuông tại A

⇒ BC2 = AB2 + AC2

(Theo định lý Pytago)

Giải bài 49 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

5 tháng 12 2017

+ΔDEF vuông tại D và ΔD'E'F' vuông tại D’ có:

Để học tốt Toán 8 | Giải toán lớp 8

⇒ ΔDEF ∼ ΔD'E'F' (hai cạnh góc vuông)

*)Áp dụng định lí py ta go vào tam giác A’B’C’ vuông tại A’ có:

A’C’2 + A’B’2 = B’C’2

=> A’C’2 + 22 = 52

Suy ra: A’C’2 = 25 – 4 = 21 nên Để học tốt Toán 8 | Giải toán lớp 8

*)Áp dụng định lí py ta go vào tam giác ABC vuông tại A có:

AB2 + AC2 = BC2

Thay số: 42 + AC2 = 102

Suy ra: AC2 = 100 – 16 = 84 nên

Để học tốt Toán 8 | Giải toán lớp 8

Do đó, ∆ A’B’C’ đồng dạng với tam giác ABC ( trường hợp 2).

20 tháng 3 2023

Để tìm 3 cặp tam giác đồng dạng với tam giác DEF, ta có thể sử dụng các định lý đồng dạng trong tam giác.

  1. Tam giác DHE đồng dạng với tam giác DEF Ta có:
  • Góc D của tam giác DEF bằng góc D của tam giác DHE (do DH là đường cao của tam giác DEF, nên góc DHS vuông góc với DE)
  • Góc E của tam giác DEF bằng góc H của tam giác DHE (do HE là đường cao của tam giác DHE, nên góc HED vuông góc với DE)
  • Từ hai quan sát trên, ta suy ra tam giác DHE đồng dạng với tam giác DEF theo định lý góc-góc-góc.
  1. Tam giác EFD đồng dạng với tam giác DEF Ta có:
  • Tam giác EFD cũng là tam giác vuông tại D, nên góc D bằng góc D của tam giác DEF.
  • Từ đó, ta có hai góc D giống nhau ở hai tam giác, còn lại là góc E và góc F, ta có:

EF/DF = (DE + DF)/DF = (6+8)/8 = 7/4

ED/DF = DE/DF = 6/8 = 3/4

  • Từ hai tỉ lệ này, ta suy ra tam giác EFD đồng dạng với tam giác DEF theo định lý góc - cân - góc.
  1. Tam giác EHD đồng dạng với tam giác DEF Ta có:
  • Góc D của tam giác DEF bằng góc H của tam giác EHD (do DH là đường cao của tam giác DEF, nên góc DHS vuông góc với DE; HE là đường cao của tam giác EHD, nên góc HES vuông góc với ED; do đó ta có góc H bằng góc D)
  • Góc E của tam giác DEF bằng góc E của tam giác EHD (do cả hai tam giác đều chứa cạnh ED)
  • Từ hai quan sát trên, ta suy ra tam giác EHD đồng dạng với tam giác DEF theo định lý góc-góc-góc.

Vậy ta đã tìm được 3 cặp tam giác đồng dạng với tam giác DEF, đó là: DHE, EFD, EHD.

12 tháng 9 2019

Ba cạnh ΔABC tương ứng tỉ lệ với ba cạnh ΔDFE

Để học tốt Toán 8 | Giải toán lớp 8

⇒ ΔABC ∼ ΔDFE

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Xét cặp tam giác thứ nhất: Hình a và Hình c.

Ta có: \(\frac{3}{9} = \frac{1}{3};\frac{7}{{21}} = \frac{1}{3};\frac{{8\frac{1}{3}}}{{25}} = \frac{1}{3}\).

Do đó, tam giác ở Hình a và Hình c đồng dạng với nhau.

Xét cặp tam giác thứ hai: Hình b và Hình d.

Ta có: \(\frac{7}{{14}} = \frac{1}{2};\frac{7}{{14}} = \frac{1}{2};\frac{3}{6} = \frac{1}{2}\).

Do đó, tam giác ở Hình b và Hình d đồng dạng với nhau.

a: EP/FP=DE/DF=3/4

b: Xet ΔFHP vuông tại H và ΔFDE vuông tại D có

góc HFP chung

=>ΔFHP đồng dạng vơi ΔFDE

c: ΔFHP đồng dạng với ΔFDE

=>HP/DE=FP/FE=4/7

=>HP/9=4/7

=>HP=36/7(cm)

27 tháng 3 2023

a: EP/FP=DE/DF=3/4

b: Xet ΔFHP vuông tại H và ΔFDE vuông tại D có

góc HFP chung

=>ΔFHP đồng dạng vơi ΔFDE

c: ΔFHP đồng dạng với ΔFDE

=>HP/DE=FP/FE=4/7

=>HP/9=4/7

=>HP=36/7(cm)

22 tháng 4 2017

Giải bài 49 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8