cho tam giác ABC vuông tại A, BE là tia phân giác của góc ABC(E thuộc AC). Kẻ ED vuông góc với BC (Dthuộc BC) a, chứng minh tam giác ABE=tam giác DBE và AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a, Vì ED \(\perp\)BC ( gt ) \(\Rightarrow\)\(\Delta\)DBE là tam giác vuông tại D
Xét \(\Delta\) vuông ABE và \(\Delta\)vuông DBE, có :
BE : cạnh chung
góc ABE = góc DBE ( BE là tpg góc ABC )
\(\Rightarrow\)\(\Delta\)vuông ABE = \(\Delta\) vuông DBE ( cạnh huyền góc nhọn )
b, Vì \(\Delta\) ABE = \(\Delta\)DBE ( cmt )
\(\Rightarrow\)BA = BD ( 2 cạnh tương ứng ) \(\Rightarrow\)B nằm trên đtt của AD ( đ/l đảo )
AE = DE ( 2 cạnh tương ứng )\(\Rightarrow\) E nằm trên đtt của AD ( đ/l đảo )
Từ 2 điều trên \(\Rightarrow\) BE là đtt của đoạn thẳng AD
c, +, ta có : \(\Delta\)BAD cân tại B ( BA = BD )
\(\Rightarrow\)góc BAD = góc BDA ( t/c )
Vì AH \(\perp\) BC tại H ( gt ) \(\Rightarrow\) \(\Delta\) HAD vuông tại H
Xét \(\Delta\)vuông HAD, có :
góc HAD + góc HDA ( hay góc BDA ) = 90o ( 2 góc phụ nhau )
Xét \(\Delta\) vuông ABC, có :
góc CAD + góc BAD = 90o ( 2 góc phụ nhau )
Mà góc BDA = góc BAD ( cmt )
Từ các điều trên \(\Rightarrow\)góc HAD = góc CAD (1)
Mà tia AD nằm giữa 2 tia AH, AC ( cách vẽ ) (2)
Từ (1) và (2) \(\Rightarrow\) AD là tpg của góc HAC ( đpcm )
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
góc ABE=góc DBE
=>ΔBAE=ΔBDE
b: BA=BD
EA=ED
=>BE là trung trực của AD
c: góc BAD+góc CAD=90 độ
góc HAD+góc BDA+90 độ
góc BAD=góc BDA
=>góc CAD=góc HAD
=>AD làphân giác của góc HAC
Xét trong tam giác vuông ABC ta có:
Góc ACB=300
=> ABC=180-90-30=600
Vì góc ACB<ABC(30>60)
=> AB<AC(tính chất cạnh và góc đối diện)
b/Xét tam giác ABE và tam giác DBE có:
BE chung
BAE=BDE=900
ABE=DBE(Phân giác BE của góc ABC)
=> Tam giác ABE= tam giác DBE(ch-gn)
c/ Ta có BE là đường phân giác góc ABC
=> ABE=DBE=60/2=300
=> DBE=ECD=300
=> Tam giác ECB cân tại E
Vì EC là cạnh huyền của tam giác EDC vuông tại D
Mà tam giác ECB cân tại E nên BE cũng là cạnh huyền tam giác ABE
=> BE>AB
=> EC>AB(đpcm)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó: ΔBAD=ΔBED
=>BA=BE
=>ΔBAE cân tại B
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc với BC
c: ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE
nếu bạn không phiền thì có thể vẽ hình ra được không ạ :((
Xét ΔABE vuông tại A và ΔDBE vuông tại D có
BE chung
góc ABE=góc DBE
Do đó: ΔABE=ΔDBE