K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABE vuông tại A và ΔDBE vuông tại D có

BE chung

góc ABE=góc DBE

Do đó: ΔABE=ΔDBE

24 tháng 5 2021

                                                                                      Giải

a, Vì ED \(\perp\)BC ( gt ) \(\Rightarrow\)\(\Delta\)DBE là tam giác vuông tại D

Xét \(\Delta\) vuông ABE và \(\Delta\)vuông DBE, có :

BE : cạnh chung 

góc ABE = góc DBE ( BE là tpg góc ABC ) 

\(\Rightarrow\)\(\Delta\)vuông ABE = \(\Delta\) vuông DBE ( cạnh huyền góc nhọn )

b, Vì \(\Delta\) ABE = \(\Delta\)DBE ( cmt )

\(\Rightarrow\)BA = BD ( 2 cạnh tương ứng ) \(\Rightarrow\)B nằm trên đtt của AD ( đ/l đảo )

          AE = DE ( 2 cạnh tương ứng )\(\Rightarrow\) E nằm trên đtt của AD ( đ/l đảo )

Từ 2 điều trên \(\Rightarrow\) BE là đtt của đoạn thẳng AD 

c, +, ta có : \(\Delta\)BAD cân tại B ( BA = BD )

\(\Rightarrow\)góc BAD = góc BDA ( t/c )

Vì AH \(\perp\) BC tại H ( gt ) \(\Rightarrow\) \(\Delta\) HAD vuông tại H 

Xét \(\Delta\)vuông HAD, có :

góc HAD + góc HDA ( hay góc BDA ) = 90o ( 2 góc phụ nhau )

Xét \(\Delta\) vuông ABC, có :

góc CAD + góc BAD = 90o ( 2 góc phụ nhau )

Mà góc BDA = góc BAD ( cmt )

Từ các điều trên \(\Rightarrow\)góc HAD = góc CAD    (1)

Mà tia AD nằm giữa 2 tia AH, AC ( cách vẽ )    (2)

Từ (1) và (2) \(\Rightarrow\) AD là tpg của góc HAC ( đpcm )

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

góc ABE=góc DBE

=>ΔBAE=ΔBDE
b: BA=BD

EA=ED

=>BE là trung trực của AD
c: góc BAD+góc CAD=90 độ

góc HAD+góc BDA+90 độ

góc BAD=góc BDA

=>góc CAD=góc HAD

=>AD làphân giác của góc HAC

10 tháng 2 2020

hack não

24 tháng 6 2020

hack não

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0

Xét trong tam giác vuông ABC ta có:

Góc ACB=300

=> ABC=180-90-30=600

Vì góc ACB<ABC(30>60)

=> AB<AC(tính chất cạnh và góc đối diện)

b/Xét tam giác ABE và tam giác DBE có:

BE chung

BAE=BDE=900

ABE=DBE(Phân giác BE của góc ABC)

=> Tam giác ABE= tam giác DBE(ch-gn)

c/ Ta có BE là đường phân giác góc ABC

=> ABE=DBE=60/2=300

=> DBE=ECD=300

=> Tam giác ECB cân tại E

Vì EC là cạnh huyền của tam giác EDC vuông tại D

Mà tam giác ECB cân tại E nên BE cũng là cạnh huyền tam giác ABE

=> BE>AB

=> EC>AB(đpcm)

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do đó: ΔBAD=ΔBED

=>BA=BE

=>ΔBAE cân tại B

b: ΔBAD=ΔBED

=>góc BED=90 độ

=>DE vuông góc với BC

c: ΔBAD=ΔBED

=>BA=BE và DA=DE
=>BD là trung trực của AE

4 tháng 1 2023

nếu bạn không phiền thì có thể vẽ hình ra được không ạ :((