Một người đi từ a đến b với thời gian dự định người đó đi được 1/3 quãng đường AB với vận tốc 10 km h thì nghỉ 20 phút sau đó đi tiếp với vận tốc 15 km h nên đến B sớm hơn dự định 20 phút Tính quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Gọi quãng đường AB là x (km) (x>0)
-Thời gian đi hết quãng đường dự định là: \(\dfrac{x}{30}\left(h\right)\)
-Thời gian đi nửa quãng đường là: \(\dfrac{x}{60}\left(h\right)\)
-Thời gian đi nửa quãng đường còn lại trên thực tế là: \(\dfrac{x}{72}\left(h\right)\)
-Vì xe máy đến B sớm hơn dự định 10 phút nên ta có phương trình:
\(\dfrac{x}{30}-\dfrac{x}{60}-\dfrac{x}{72}=\dfrac{1}{6}\)
\(\Leftrightarrow x\left(\dfrac{1}{30}-\dfrac{1}{60}-\dfrac{1}{72}\right)=\dfrac{1}{6}\)
\(\Leftrightarrow x.\dfrac{1}{360}=\dfrac{1}{6}\)
\(\Leftrightarrow x=60\left(nhận\right)\)
-Vậy quãng đường AB là 60 km ; thời gian dự định đi hết quãng đường AB là \(\dfrac{60}{30}=2\left(h\right)\)
gọi x là 1/2 quãng đường
10 phut =0,16 giờ
theo đề bài ta có pt
x/30+x/36-0,16=2x/30(bạn tiếp tục là sẽ xong)
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian dự định ban đầu là: \(\dfrac{x}{30}\left(h\right)\)
Thời gian thực tế là: \(\dfrac{6}{5}+\dfrac{x-30}{35}\)
Theo đề, ta có phương trình:
\(\dfrac{6}{5}+\dfrac{x-30}{35}-\dfrac{x}{30}=0\)
\(\Leftrightarrow\dfrac{252}{210}+\dfrac{6\left(x-30\right)}{210}-\dfrac{7x}{210}=0\)
\(\Leftrightarrow252+6x-180-7x=0\)
\(\Leftrightarrow72-x=0\)
hay x=72(thỏa ĐK)
Vậy: AB=72km
Gọi độ dài quãng đường AB là x km ( x>0)
=> Thời gian dự định người đó đi là : \(\dfrac{x}{10}\left(h\right)\)
Thời gian đi 1/3 quãng đường AB là : \(\dfrac{x:3}{10}=\dfrac{x}{30}\left(h\right)\)
=> \(\dfrac{x}{30}+\dfrac{1}{3}+\dfrac{x\cdot\dfrac{2}{3}}{15}+\dfrac{1}{3}=\dfrac{x}{10}\)
=> \(\dfrac{7}{90}\cdot x+\dfrac{2}{3}=\dfrac{x}{10}\)
=> \(x=30\) (tm)
vậy ...