K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

\(=\frac{199.2000+199-1}{1998+1999.2000}.\frac{7}{5}\)

\(=\frac{199.2-1}{1998-1999}.\frac{7}{5}\)

\(=\frac{398-1}{-1}.\frac{7}{5}\)

\(=\frac{397}{-1}.\frac{7}{5}\)

\(=-397.\frac{7}{5}\)

\(=-555,8\)

Hình như sai đề

14 tháng 5 2019

\(\frac{1999\cdot2001-1}{1998+1999\cdot2000}\cdot\frac{7}{5}\)

\(=\frac{1999\cdot\left(2000+1\right)-1}{1998+1999\cdot2000}\cdot\frac{7}{5}\)

\(=\frac{1999\cdot2000+1999-1}{1998+1999.2000}\cdot\frac{7}{5}\)

\(=\frac{1999\cdot2000+1998}{1998+1999.2000}\cdot\frac{7}{5}=1\cdot\frac{7}{5}=\frac{7}{5}\)

14 tháng 5 2019

thank you very much

2 tháng 5 2017

\(\frac{\left(16-8:5\right)x177}{199x2001}\frac{\left(16-16\right)x177}{199x2001}=\frac{0x177}{199x2001}=\frac{0}{199x2001}=0\)

26 tháng 11 2015

\(M=1+\frac{1}{199}+1+\frac{2}{198}+1+....+\frac{198}{2}+1=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+....+\frac{200}{2}\)

  \(=200.\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)=200 T

\(S=\frac{T}{200T}=\frac{1}{200}\)

30 tháng 4 2019

\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}+\frac{1}{6}\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{1}{8}+\frac{1}{8}\cdot\frac{1}{9}\)

\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)

30 tháng 4 2019

\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+...+\frac{1}{8}\cdot\frac{1}{9}\)

\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

 \(=\frac{1}{2}-\frac{1}{9}\)

            * LÀM NỐT *

                              #Louis

30 tháng 6 2021

1) Có nhận xét sau:

\(\frac{1}{a\sqrt{a+1}+\left(a+1\right)\sqrt{a}}=\frac{1}{\sqrt{a^2+a}\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a^2+a}}\)

\(=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}.\)Do đó biểu thức có giá trị bằng: \(\frac{1}{1}-\frac{1}{\sqrt{2}}+..-\frac{1}{\sqrt{1999}}=1-\frac{1}{\sqrt{1999}}.\)

30 tháng 6 2021

2) Có nhận xét sau:

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\sqrt{a+1}-\sqrt{a}.\) Thay vào biểu thức ta được biểu thức

có giá trị bằng: \(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{1999}-\sqrt{1998}=\sqrt{1999}-1.\)

5 tháng 5 2016

\(\frac{1999.2001-1}{1998+1999.2000}=\frac{1999.2001-\left(1999-1998\right)}{1998+1999.2000}=\frac{1999.2001-1999+1998}{1998+1999.2000}=\frac{1999.\left(20001-1\right)+1998}{1998+1999.2000}=\frac{1999.2000+1998}{1998+1999.2000}=1\)=> đáp án là 7/5

5 tháng 5 2016

có bị thiếu dấu ngoặc không vậy

24 tháng 10 2017

ed aakrta9 rf, j,ear ,eru8refj eru jrae ear9ffnxvn