tim giá trị nhỏ nhất của các biểu thức sau
a)x^2+2y^2-2xy+8y+7
b)5x^2+y^2+2xy-12x-18
c)3x^2+4y^2+4xy+2x-4y+26
d)5x^2+9y^2-12xy+24x-48y+82
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trước tiên bạn nên đưa về dạng tổng hai bình phương
a)
\(A=x^2-4x+1=x^2-2.2x+2^2-3\)
\(=(x-2)^2-3\)
Vì \((x-2)^2\geq 0, \forall x\Rightarrow A\geq 0-3=-3\)
Vậy GTNN của $A$ là $-3$ khi $x=2$
b) \(B=(x-2)(x-6)+7=x^2-6x-2x+12+7\)
\(=x^2-8x+19=(x^2-2.4x+4^2)+3\)
\(=(x-4)^2+3\)
Vì \((x-4)^2\geq 0, \forall x\Rightarrow B\geq 0+3=3\)
Vậy GTNN của $B$ là $3$ khi $x=4$
c)
\(C=4x-x^2=4-(x^2-4x+4)=4-(x-2)^2\)
Vì \((x-2)^2\geq 0\Rightarrow C\leq 4-0=4\)
Vậy GTLN của $C$ là $4$ khi $x=2$
d) \(D=x^2-2x+y^2-4y+16=(x^2-2x+1)+(y^2-4y+4)+11\)
\(=(x-1)^2+(y-2)^2+11\)
Vì \((x-1)^2\geq 0; (y-2)^2\geq 0, \forall x,y\)
\(\Rightarrow D\geq 0+0+11=11\)
Vậy GTNN của $D$ là $11$ khi \(\left\{\begin{matrix} x-1=0\\ y-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\end{matrix}\right.\)
\(A=5x^2+9y^2-12xy+24x-48y+81\)
\(A=4x^2+x^2+9y^2-12xy+32x-48y-8x+16+1+64\)
\(A=(4x^2+9y^2+64-12xy+32x-48y)+\left(x^2-8x+16\right)+1\)
\(A=[\left(2x\right)^2+\left(3y\right)^2+\left(8\right)^2-2.2x.3y-2.3y.8+2.2x.8]+\left(x^2-8x+16\right)+1\)
\(A=\left(2x-3y+8\right)^2\left(x-4\right)^2+1\)
\(Do\) \(\left(2x-3y+8\right)^2\ge0\) \(và\) \(\left(x-4\right)^2\ge0\)
\(\Rightarrow A_{min}=1\)
a) x2 + 2y2 - 2xy + 8y + 7
= x2 - 2xy + y2 + y2 + 8y + 16 - 9
= (x - y)2 + (y + 4)2 - 9
GTNN của biểu thức trên là -9
b) 5x2 + y2 + 2xy - 12x - 18
= x2 + 2xy + y2 + 4x2 - 12x + 9 - 27
= (x + y)2 + (2x - 3)2 - 27
GTNN của biểu thức trên là -27
c) 3x2 + 4y2 + 4xy + 2x - 4y + 26
= 2x2 + 4xy + 2y2 + x2 + 2x + 1 + 2y2 - 4y + 2 + 23
= (\(\sqrt{2}\)x + \(\sqrt{2}\)y)2 + (x + 1)2 + 23
GTNN của biểu thức trên là 23
Câu d mình ko biết làm
d) D= 5x^2+9y^2-12xy+24x-48y+82
\(=4x^2+9y^2+64-12xy+32x-48y+x^2-8x+16+2\)
\(=\left[\left(2x\right)^2+\left(3y\right)^2+8^2-2.2x.3y+2.2x.8-2.3y.8\right]+\left(x^2-2.x.4+4^2\right)+2\)
\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)
Vậy GTNN của D là 2 tại \(\hept{\begin{cases}\left(2x-3y+8\right)^2=0\\\left(x-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}}\)