K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(\begin{array}{l}a)\frac{{4{\rm{x}} - 6}}{{5{{\rm{x}}^2} - x}}.\frac{{25{{\rm{x}}^2} - 10{\rm{x}} + 1}}{{27 + 8{{\rm{x}}^3}}}\\ = \frac{{ - 2\left( {3 - 2{\rm{x}}} \right)}}{{x\left( {5{\rm{x}} - 1} \right)}}.\frac{{{{\left( {5{\rm{x}} - 1} \right)}^2}}}{{\left( {3 - 2{\rm{x}}} \right)\left( {9 + 6{\rm{x}} + 4{{\rm{x}}^2}} \right)}}\\ = \frac{{ - 2\left( {5{\rm{x}} - 1} \right)}}{{x\left( {9 + 6{\rm{x}} + 4{{\rm{x}}^2}} \right)}}\\b)\frac{{2{\rm{x}} + 10}}{{{{\left( {x - 3} \right)}^2}}}:\frac{{{{\left( {x + 5} \right)}^3}}}{{{x^2} - 9}}\\ = \frac{{2{\rm{x}} + 10}}{{{{\left( {x - 3} \right)}^2}}}.\frac{{{x^2} - 9}}{{{{\left( {x + 5} \right)}^2}}}\\ = \frac{{2\left( {x + 5} \right)\left( {x - 3} \right)\left( {x + 3} \right)}}{{{{\left( {x - 3} \right)}^2}{{\left( {x + 5} \right)}^3}}}\\ = \frac{{2\left( {x + 3} \right)}}{{\left( {x - 3} \right){{\left( {x + 5} \right)}^2}}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(\begin{array}{l}a)\frac{{4{{\rm{x}}^2} - 1}}{{16{{\rm{x}}^2} - 1}}.\left( {\frac{1}{{2{\rm{x}} + 1}} + \frac{1}{{2{\rm{x}} - 1}} + \frac{1}{{1 - 4{{\rm{x}}^2}}}} \right)\\ = \frac{{4{{\rm{x}}^2} - 1}}{{16{{\rm{x}}^2} - 1}}.\frac{{2{\rm{x}} - 1 + 2{\rm{x}} + 1 - 1}}{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}{{\left( {4{\rm{x}} - 1} \right)\left( {4{\rm{x + 1}}} \right)}}.\frac{{4{\rm{x}} - 1}}{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{1}{{4{\rm{x}} + 1}}\\b)\left( {\frac{{x + y}}{{xy}} - \frac{2}{x}} \right).\frac{{{x^3}{y^3}}}{{{x^3} - {y^3}}}\\ = \frac{{x + y - 2y}}{{xy}}.\frac{{{x^3}{y^3}}}{{{x^3} - {y^3}}}\\ = \frac{{\left( {x - y} \right).{x^3}{y^3}}}{{xy\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}} = \frac{{{x^2}{y^2}}}{{{x^2} + xy + y{}^2}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right):\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right) = \frac{{ - 3{\rm{x}}}}{{5{\rm{x}}{y^2}}}.\frac{{ - 12{\rm{x}}y}}{{5{y^2}}} = \frac{{36{{\rm{x}}^2}y}}{{25{\rm{x}}{y^4}}}\)

b) \(\frac{4{{\text{x}}^{2}}-1}{8{{\text{x}}^{3}}-1}:\frac{4{{\text{x}}^{2}}+4\text{x}+1}{4{{\text{x}}^{2}}+2\text{x}+1}=\frac{4{{\text{x}}^{2}}-1}{8{{\text{x}}^{3}}-1}.\frac{4{{\text{x}}^{2}}+2\text{x}+1}{4{{\text{x}}^{2}}+4\text{x}+1}\)

\(=\frac{\left( 2\text{x}-1 \right)\left( 2\text{x}+1 \right)\left( 4{{\text{x}}^{2}}+2\text{x}+1 \right)}{\left( 2\text{x}-1 \right)\left( 4{{\text{x}}^{2}}+2\text{x}+1 \right){{\left( 2\text{x}+1 \right)}^{2}}}=\frac{1}{2\text{x}+1}\).

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

Khẳng định C là khẳng định sai vì:

Nếu: \(\frac{{x + 1}}{{x - 1}} = \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}}\)

\(\begin{array}{l} \Rightarrow \frac{{x + 1}}{{x - 1}} - \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}} = 0\\ \Rightarrow \frac{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) - \left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = 0\\ \Rightarrow \frac{{\left( {{x^3} + 1} \right) - \left( {{x^3} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{2}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = 0\end{array}\)

\( \Rightarrow \) vô lý

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

Cặp phân thức có cùng mẫu thức: \(\frac{{5{\rm{x}} + 10}}{{4{\rm{x}} - 8}}\) và \(\frac{{4 - 2{\rm{x}}}}{{4\left( {x - 2} \right)}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\frac{{{x^2} - 3{\rm{x}} + 1}}{{2{{\rm{x}}^2}}} + \frac{{5{\rm{x}} - 1 - {x^2}}}{{2{{\rm{x}}^2}}} = \frac{{{x^2} - 3{\rm{x}} + 1 + 5{\rm{x}} - 1 - {x^2}}}{{2{{\rm{x}}^2}}} = \frac{{2{\rm{x}}}}{{2{{\rm{x}}^2}}}\)

\(b)\frac{y}{{x - y}} + \frac{x}{{x + y}} = \frac{{y\left( {x + y} \right) + x\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{xy + {y^2} + {x^2} - xy}}{{{x^2} - {y^2}}} = \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}\)

\(c)\frac{x}{{2{\rm{x}} - 6}} + \frac{9}{{2{\rm{x}}\left( {3 - x} \right)}} = \frac{x}{{2\left( {x - 3} \right)}} - \frac{9}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{{x^2}}}{{2{\rm{x}}\left( {x - 3} \right)}} - \frac{9}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{{x^2} - 9}}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{x + 3}}{{2{\rm{x}}}}\)

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

a) Tìm thương và dư (nếu có) trong các phép chia \(\left( {3{{\rm{x}}^4}y - 9{{\rm{x}}^3}{y^2} - 21{{\rm{x}}^2}{y^2}} \right):\left( {3{{\rm{x}}^2}y} \right)\)

• Sử dụng lệnh Division(<đa thức bị chia>, <đa thức chia>) để tìm thương và dư của phép chia hai đa thức.

• Nhập biểu thức trên dòng lệnh của cửa sổ CAS sau đó nhấn Enter, kết quả sẽ được hiển thị ngay bên dưới.

Vậy phép chia hai đa thức \(\left( {3{{\rm{x}}^4}y - 9{{\rm{x}}^3}{y^2} - 21{{\rm{x}}^2}{y^2}} \right)\) cho \(3{{\rm{x}}^2}y\), ta được thương là \({x^2} - 3{\rm{x}}y - 7y\) và dư 0.

b) Tìm thương và dư (nếu có) trong các phép chia (2x3 + 5x2 – 2x + 12) : (2x2 – x + 1).

• Sử dụng lệnh Division(<đa thức bị chia>, <đa thức chia>) để tìm thương và dư của phép chia hai đa thức.

• Nhập biểu thức trên dòng lệnh của cửa sổ CAS sau đó nhấn Enter, kết quả sẽ được hiển thị ngay bên dưới.

Vậy phép chia hai đa thức (2x3 + 5x2 – 2x + 12) cho (2x2 – x + 1), ta được thương là x + 3 và dư 9.

9 tháng 9 2023

Nhập biểu thức trên dòng lệnh của cửa sổ CAS sau đó nhấn Enter, kết quả sẽ được hiển thị ngay bên dưới.
loading...

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\frac{{5{\rm{x}} + 10}}{{25{{\rm{x}}^2} + 50}} = \frac{{5\left( {x + 2} \right)}}{{25\left( {{x^2} + 2} \right)}} = \frac{{x + 2}}{{5\left( {{x^2} + 2} \right)}}\)

\(b)\frac{{45{\rm{x}}\left( {3 - x} \right)}}{{15{\rm{x}}{{\left( {x - 3} \right)}^2}}} = \frac{{3\left( {3 - x} \right)}}{{{{\left( {x - 3} \right)}^2}}}\)

\(c)\frac{{{{\left( {{x^2} - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {{x^3} + 1} \right)}} = \frac{{\left( {{x^2} - 1} \right)\left( {{x^2} - 1} \right)}}{{\left( {x + 1} \right)\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{\left( {x + 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^2} - x + 1}}\)

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

a) Ta có: \(P = \frac{{x + 1}}{{{x^2} - 1}} = \frac{{x + 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{1}{{x - 1}}\)

Suy ra: \(Q = \frac{1}{{x - 1}}\)

b) Thay x = 11 vào P ta được: \(P = \frac{{11 + 1}}{{{{11}^2} - 1}} = \frac{1}{{10}}\)

Thay x = 11 vào Q ta được: \(Q = \frac{1}{{11 - 1}} = \frac{1}{{10}}\)

Hai kết quả P = Q tại x = 11