K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

a) Số tiền người đó nhận được sau 1 tháng là:

P + P . r = P(1 + r).

b) Số tiền người đó nhận được sau 2 tháng là:

P(1 + r) + P(1 + r) . r = P(1 + r)(1 + r) = P(1 + r)2.

c) Số tiền người đó nhận được sau 3 tháng là:

P(1 + r)2 + P(1 + r). r = P(1 + r)(1 + r) = P(1 + r)3.

d) Công thức tính số tiền người đó nhận được sau n tháng là: P(1 + r)n.

30 tháng 1 2018

Đáp án D

Số tiền sau 2 năm bà X nhận được là 100. 1 + 7 % 2 = 114 , 49  triệu đồng

Vậy số tiền lãi mà bà X thu được là   T = 114 , 49 − 100 = 14 , 49 triệu đồng

18 tháng 9 2023

Gọi lãi suất là x (%(

Ta có sau 2 năm tổng gốc và lãi 449,44 triệu đồng.

=> \(400.\left(1+x\right)^2=449,44\\ \Leftrightarrow\left(1+x\right)^2=\dfrac{449,44}{400}=1,1236=\left(106\%\right)^2\\ \Rightarrow x\left(\%\right)=6\%\\ Vậy:x=6\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Số tiền lãi sau một năm là: \(A.r\)

Tổng số tiền vốn và lãi sau một năm của người gửi là: \(A + Ar = A\left( {1 + r} \right)\).

b) Số tiền lãi sau tháng thứ nhất là: \(A.\frac{r}{{12}}\)

Tổng số tiền vốn và lãi sau tháng thứ nhất là: \(A + A.\frac{r}{{12}} = A\left( {1 + \frac{r}{{12}}} \right)\).

Số tiền lãi sau tháng thứ hai là: \(A\left( {1 + \frac{r}{{12}}} \right).\frac{r}{{12}}\)

Tổng số tiền vốn và lãi sau tháng thứ hai là:

\(A\left( {1 + \frac{r}{{12}}} \right) + A\left( {1 + \frac{r}{{12}}} \right).\frac{r}{{12}} = A\left( {1 + \frac{r}{{12}}} \right).\left( {1 + \frac{r}{{12}}} \right) = A{\left( {1 + \frac{r}{{12}}} \right)^2}\).

Số tiền lãi sau tháng thứ ba là: \(A{\left( {1 + \frac{r}{{12}}} \right)^2}.\frac{r}{{12}}\)

Tổng số tiền vốn và lãi sau tháng thứ ba là:

\(A{\left( {1 + \frac{r}{{12}}} \right)^2} + A{\left( {1 + \frac{r}{{12}}} \right)^2}.\frac{r}{{12}} = A{\left( {1 + \frac{r}{{12}}} \right)^2}.\left( {1 + \frac{r}{{12}}} \right) = A{\left( {1 + \frac{r}{{12}}} \right)^3}\).

Vậy tổng số tiền vốn và lãi sau một năm là:  \(A{\left( {1 + \frac{r}{{12}}} \right)^{12}}\).

1 tháng 10 2017

Chọn A

a: tổng số tiền nhận được sau 1 năm là:

\(T=10000000\left(1+\dfrac{0.05}{2}\right)^2=10506250\left(đồng\right)\)

b: Tổng số tiền nhận được sau 1 năm là:

\(T=100000000\cdot e^{0.05}\simeq\text{10512711}\left(đồng\right)\)

Anh Bình gửi 200 triệu đồng vào ngân hàng VB với kì hạn cố định 12 tháng và hưởng mức lãi suất là 0,65%/tháng. Tuy nhiên, sau khi gửi được tròn 8 tháng anh Bình có việc phải dùng đến 200 triệu trên. Anh đến ngân hàng đình rút tiền thì được nhân viên ngân hàng tư vấn: “Nếu rút tiền trước hạn, toàn bộ số tiền anh gửi chỉ được hưởng mức lãi suất không kì hạn là 0,02%/tháng. Anh...
Đọc tiếp

Anh Bình gửi 200 triệu đồng vào ngân hàng VB với kì hạn cố định 12 tháng và hưởng mức lãi suất là 0,65%/tháng. Tuy nhiên, sau khi gửi được tròn 8 tháng anh Bình có việc phải dùng đến 200 triệu trên. Anh đến ngân hàng đình rút tiền thì được nhân viên ngân hàng tư vấn: “Nếu rút tiền trước hạn, toàn bộ số tiền anh gửi chỉ được hưởng mức lãi suất không kì hạn là 0,02%/tháng. Anh nên thế chấp sổ tiết kiệm đó tại ngân hàng để vay ngân hàng 200 triệu với lãi suất 0,7%/tháng. Khi sổ của anh đến hạn, anh có thể rút tiền để trả nợ ngân hàng”. Nếu làm theo tư vấn của nhân viên ngân hàng, anh Bình sẽ đỡ thiệt một số tiền gần nhất với con số nào dưới đây (biết rằng ngân hàng tính lãi theo thể thức lãi kép)?

A. 10,85 triệu đồng

B. 10,51 triệu đồng

C. 10,03 triệu đồng

D. 10,19 triệu đồng

1
19 tháng 1 2017

Chọn D.

Phương pháp:

Cách giải:

* Nếu anh Bình nghe theo nhân viên tư vấn ngân hàng

+ Tiền lãi sanh Bình nhận được sau khi gửi 200 triệu trong 12 tháng với mức lãi suất 0,65%/ tháng là 

Tổng số tiền lãi anh Bình nhận được là M = A – B

* Nếu anh Bình rút tiền ngay

Số tiền lãi anh Bình nhận được trong 8 tháng với mức lãi suất 0,02%/ tháng là

Suy ra nếu làm theo nhân viên tư vấn ngân hàng thì anh Bình sẽ đỡ thiệt số tiền là 

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

Gọi số tiền mà bác Năm đem đi gửi là \(x\) đồng. Điều kiện: \(x > 0\).

Vì lãi suất là \(6,2\% \)/năm nên số tiền lãi sau năm thứ nhất bác năm nhận được là: \(x.6,2\%  = x.0,062\) (đồng)

Số tiền cả gốc lẫn lãi của bác Năm sau năm thứ nhất là \(x + 0,062x = 1,062x\) (đồng)

Số tiền lãi bác Năm nhận được ở năm thứ hai là: \(1,062x.6,2\%  = \dfrac{{1,062x.6,2}}{{100}}\) (đồng)

Số tiền cả gốc và lãi sau năm thứ hai là: \(1,062x + \dfrac{{1,062x.6,2}}{{100}}\) (đồng)

Vì số tiền bác Năm thu được cả gốc và lãi sau 2 năm là 225 568 800 đồng nên ta có phương trình:

\(1,062x + \dfrac{{1,062x.6,2}}{{100}} = 225568000\)

\(\dfrac{{1,062x.100}}{{100}} + \dfrac{{1,062x.6,2}}{{100}} = \dfrac{{225568800.100}}{{100}}\)

\(1,062x.100 + 1,062x.6,2 = 225568800.100\)

\(106,2x + 6,5844x = 22556880000\)

\(112,7844x = 22556880000\)

\(x = 22556880000:112,7844\)

\(x = 200000000\) (thỏa mãn điều kiện)

Vậy bác Năm đã gửi 200 000 000 đồng vào ngân hàng.

2 tháng 3 2018

Đáp án đúng : B

4 tháng 7 2019

17 tháng 9 2019