K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCAB có CA^2+CB^2=AB^2

nên ΔCAB vuông tại C

Xét ΔCAB vuông tại C có CH là đường cao

nên CH*AB=CA*CB

=>CH*25=15*20=300

=>CH=12(cm)

b: góc BCD+góc ACD=90 độ

góc BDC+góc HCD=90 độ

mà góc ACD=góc HCD

nên góc BCD=góc BDC

=>ΔBDC cân tại B

c: BC^2+BD^2+CD^2

=BC^2+BC^2+CD^2

=2BC^2+CD^2

=2(BH^2+HC^2)+CH^2+HD^2

=2BH^2+3CH^2+DH^2

5 tháng 9 2023

Trong ABC, ta có: AD là đường phân giác của (BAC)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (tính chất đường phân giác)

Mà AB = 15 (cm); AC = 20 (cm)

Nên Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (tính chất tỉ lệ thức)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

4 tháng 9 2023

Trong ABC, ta có: AD là đường phân giác của (BAC)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (tính chất đường phân giác)

Mà AB = 15 (cm); AC = 20 (cm)

Nên Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (tính chất tỉ lệ thức)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

8 tháng 4 2022

a)\(ABC\) vuông tại \(A\)\(\Rightarrow\)\(BC^2=AB^2+AC^2\)

\(\Rightarrow\)\(BC=\)\(\sqrt{AB^2+AC^2}\) \(=\)\(\sqrt{80^2+60^2}\)\(=100^2\)\(\Rightarrow\)\(BC=100cm\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{60^2}+\dfrac{1}{80^2}=\dfrac{1}{48^2}\Rightarrow AH=48\)

\(AI\) là tia phân giác của góc \(BAC\)\(\Rightarrow\)\(\dfrac{BI}{\text{CI }}=\dfrac{AB}{AC}=\dfrac{80}{60}=\dfrac{4}{3}\Rightarrow BI=\dfrac{4}{3}CI\)

Mà \(BI+CI=BC=100\)

\(\Rightarrow\)\(\dfrac{4}{3}CI+CI=100\Leftrightarrow\dfrac{7}{3}CI=\dfrac{300}{7}\)

\(\Rightarrow\)\(BI=BC-CI=100-\)\(\dfrac{300}{7}=\dfrac{400}{7}\)

b) Ta có Góc \(ACH + CAH = 90^o\)

             Góc \(CAH + HAM = 90^o\)

\(\Rightarrow\)\(ACH=HAM\)

Xét \(Δ MAH\) và \(ΔNCH,\) có :

\(CHN=AHM(=45^o)\)

\(ACH=HAM\)

\(\Rightarrow\)\(ΔMAH\) đồng dạng vs \(ΔNCH\)

\(\Rightarrow\)\(\dfrac{CN}{AM}=\dfrac{CH}{AH}\)

26 tháng 3 2022

Giúp mình với

AH=15*20/25=300/25=12(cm)

1 tháng 4 2023

AH=15*20/25=300/25=12(cm)

24 tháng 4 2023

có cứt :)))) 

lol

 

a: BD/AD=BC/AC=5/4

b: Xét ΔHBA và ΔABC có

góc BHA=góc BAC

góc B chung

=>ΔHBA đồng dạng với ΔABC

c: Xét ΔDAC và ΔDKB có

góc DAC=góc DKB

góc ADC=góc KDB

=>ΔDAC đồng dạng với ΔDKB

=>DA/DK=DC/DB

=>DA*DB=DK*DC

a: \(CB=\sqrt{12^2+16^2}=20\left(cm\right)\)

AH=12*16/20=9,6cm

Xet ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=20/7

=>BD=60/7cm; CD=80/7cm

b: Sửa đề: AB,AC

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

AM=AH^2/AB=9,6^2/12=7,68(cm)

AN=AH^2/AC=9,6^2/16=5,76(cm)

\(S_{AMHN}=7.68\cdot5.76=44.2368\left(cm^2\right)\)

1: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc ACB chung

Do đó: ΔABC\(\sim\)ΔHAC

2: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

Xét ΔABC có AM là phân giác

nên BM/AB=CM/AC

=>BM/3=CM/4

Áp dụng tính chất của dãy tr số bằng nhau, ta được:

\(\dfrac{BM}{3}=\dfrac{CM}{4}=\dfrac{BM+CM}{3+4}=\dfrac{25}{7}\)

Do đó: BM=75/7(cm); CM=100/7(cm)