K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

13 tháng 1 2016

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

1: Số số hạng là (99-1):1+1=99(số)

Tổng là \(\dfrac{99\cdot\left(99+1\right)}{2}=99\cdot50=4950\)

1:

3*A=1*2*3+2*3*(4-1)+3*4*(5-2)+...+n(n+1)[(n+2)-(n-1)]

=1*2*3-1*2*3+2*3*4-2*3*4+...-(n-1)*n*(n+1)+n(n+1)(n+2)

=n(n+1)*(n+2)

=>\(A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

4 tháng 9 2023

cảm on nhonhung

11 tháng 9 2015

cau hỏi tương tự ko có mà!!!!!!!!!!!!!!!!!!!!!!!!!!!!

23 tháng 1 2022

3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)

3C=2014.2015.2016

C=2014.2015.2016:3

21 tháng 7 2017

S=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3

22 tháng 11 2021

Tham khảo:

https://olm.vn/hoi-dap/detail/7327860996.html

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+....+n\left(n+1\right).3\)

\(\Leftrightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

   \(\Leftrightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(\Leftrightarrow3A=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

 

30 tháng 9 2023
Bài 1: Tính A = 1.2 + 2.3 + 3.4 +...+n. (n+1)Giai: 

=> Ta thấy rằng mỗi số hạng trong dãu số trên đều là tích của hai số tự nhiên liên tiếp, khi đó: 

Gọi a1 = 1.2  → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2

Tương tự:

a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3

a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4  ....

a(n - 1) = (n - 1).n → 3a(n - 1) = 3(n - 1)n → 3a(n - 1) = (n - 1).n.(n + 1) - (n - 2).(n - 1).n

an = n.(n - 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng vế với vế của các đẳng thức trên ta được: 

3(a1 + a2 + a3 +...+ an) = n(n + 1)(n + 2) 

-> A = n.(n+1) .( n+2) / 3

 

 
30 tháng 9 2023

Khó hỉu v 🫤

E ko hỉu 

DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)Hướng dẫn giảiCách 1:Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhiên liên tiếp, khi đó:Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1= 1.2.3 - 0.1.2a2 = 2.3 → 3a2 = 2.3.3 → 3a2= 2.3.4 - 1.2.3a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4…………………..an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)nan = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n...
Đọc tiếp

DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.

Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

Hướng dẫn giải

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhiên liên tiếp, khi đó:

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1= 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2= 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

3(a1 + a2 + ... + an) = n(n + 1)(n + 2) ⇒ A = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3}

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3

3A =  1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)]

3A = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1)

3A = n(n + 1)(n + 2)

\Rightarrow A = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3}

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

Hướng dẫn giải

Áp dụng tính kế thừa của bài 1 ta có:

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

4B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

4B = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

\Rightarrow B = \frac{{\left( {n - 1} \right).n.\left( {n + 1} \right)\left( {n + 2} \right)}}{4}

Bài 3. Tính C = 1.4 + 2.5 + 3.6 + 4.7 + … + n(n + 3)

Hướng dẫn giải

Ta thấy: 1.4 = 1.(1 + 3)

2.5 = 2.(2 + 3)

3.6 = 3.(3 + 3)

4.7 = 4.(4 + 3)

…….

n(n + 3) = n(n + 1) + 2n

Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n

C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n

C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)

⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n)

3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)

3C = n(n + 1)(n + 2) + \frac{3\left(2n\ +\ 2\right)n}{2}

⇒ C = \frac{n(n+1)(n+2)}{3} + \frac{3\left(2n\ +\ 2\right)n}{2} = \frac{n(n+1)(n+5)}{3}

Bài 4: Tính D = 1+ 22 + 32 + .... + n2

Hướng dẫn giải

Nhận xét: Các số hạng của bài 1 là tích của hai số tự nhiên liên tiếp, còn ở bài này là tích của hai số tự nhiên giống nhau. Do đó ta chuyển về dạng bài tập 1:

Ta có:

A = 1.2 + 2.3 + 3.4 + ...+ n(n + 1)

A = 1.(1 + 1) + 2.(1 + 2) + 3.(1 + 3) + .... + n.(n + 1)

A = 12 + 1.1 + 22 + .1 + 32 + 3.1 + ... + n2 + n.1

A = (12 + 22 + 32 + .... + n2) + (1 + 2 + 3 + ... + n)

Mặt khác theo bài tập 1 ta có:

A = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3} và 1 + 2 + 3 + .... + n = \frac{{n\left( {n + 1} \right)}}{2}

⇒D = 12 + 22 + 32 + .... + n2 = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3} - \frac{{n\left( {n + 1} \right)}}{2} = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}

Bài 5: Tính E = 13 + 23 + 33 + ... + n3

Hướng dẫn giải

Tương tự bài toán ở trên, xuất phát từ bài toán 2, ta đưa tổng B về tổng E:

B = 1.2.3 + 2.3.4 + 4.5.6 + ... + (n - 1)n(n + 1)

B = (2 - 1).2.(2 + 1) + (3 -1).3.(3 +1) + ....+ (n - 1).n.(n + 1)

B = (23 - 2) + (33 - 3) + .... + (n3 - n)

B = (23 + 33 + .... +n3) - (2 + 3 + ... + n)

B = (13 + 23 + 33 + ... + n3) - (1 + 2 + 3 + ... + n)

B = (13 + 23 + 33 + ... + n3) - \frac{n(n + 1)}{2}

⇒ 13 + 23 + 33 + ... + n3 = B + \frac{n(n + 1)}{2}

Mà B = \frac{{\left( {n - 1} \right).n\left( {n + 1} \right)\left( {n + 2} \right)}}{4}

⇒ E = 13 + 23 + 33 + ... + n3 = \frac{{\left( {n - 1} \right).n\left( {n + 1} \right)\left( {n + 2} \right)}}{4} + \frac{n(n + 1)}{2}

3
18 tháng 10 2021

giúp mik

18 tháng 10 2021

mình thấy bài bạn có đáp án hết rồi mà?

22 tháng 5 2021

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

22 tháng 5 2021

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)