Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
CMR
a, I là trung điểm của DE
b, Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
a: Xét ΔMDB vuông tại D và ΔNEC vuông tại E có
BD=CE
góc DBM=góc ECN(=góc ACB)
Do đó; ΔMDB=ΔNEC
=>MD=NE
Xét tứ giác MDNE có
MD//NE
MD=NE
Do đó: MDNE là hình bình hành
=>MN cắt ED tại trung điểm của mỗi đường
=>I là trung điểm chung của MN và ED
b:
Kẻ AH vuông góc BC tại H
ΔABC cân tại A
mà AH là đường cao
nên AH là trung trực của BC
Gọi O là giao của AH với đường vuông góc với MN tại I
=>O nằm trên trung trực của BC
=>OB=OC
Xét ΔOMN có
OI vừa là đường cao, vừa là trung tuyến
=>ΔOMN cân tại O
=>OM=ON
Xét ΔOAB và ΔOAC có
OA chung
AB=AC
OB=OC
Do đó: ΔOAB=ΔOAC
=>góc OBA=góc OCA
Xét ΔOBM và ΔOCN có
OB=OC
BM=CN
OM=ON
Do đó: ΔOBM=ΔOCN
=>góc OBM=góc OCN
=>góc OCN=góc OCA=180/2=90 độ
=>OC vuông góc AC
=>O cố định