\(3^{-2}\) . \(2^x\) + \(2^x\) . 3 = \(\dfrac{7}{36}\)
Giúp em với ạ em cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{1}{2}x=3+2\)
\(\dfrac{1}{2}x=5\)
\(x=5\div\dfrac{1}{2}\)
\(x=10\)
\(b,\dfrac{1}{4}x^2-\sqrt{36}=10\)
\(\dfrac{1}{4}x^2-6=10\)
\(\dfrac{1}{4}x^2=10+6\)
\(\dfrac{1}{4}x^2=16\)
\(x^2=16\div\dfrac{1}{4}\)
\(x^2=64\)
\(x^2=\left(8\right)^2\)
\(\Rightarrow x=8\)
Ta có \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)
Cộng vế với vế ta được
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{20^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(\Rightarrow T< 2-\dfrac{1}{20}=\dfrac{39}{20}\)
mà 39/20 < 8/7 => T < 8/7
a/
\(\left(x-1\right)^2-\left(x+1\right)^2=2x-6\\ x^2-2x+1-\left(x^2+2x+1\right)=2x-6\\ \)
\(\Leftrightarrow x^2-2x+1-x^2-2x-1-2x+6=0\)
\(\Leftrightarrow6-6x=0\)
=> x=1
\(\Leftrightarrow\left(x-2021\right)\left(x-5\right)-\left(x-2021\right)=0\\ \Leftrightarrow\left(x-2021\right)\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2021\\x=6\end{matrix}\right.\)
\(3^{-2}.2^x+2^x.3=\dfrac{7}{36}\)
\(=>2^x\left(\dfrac{1}{9}+3\right)=\dfrac{7}{36}\)
\(=>2^x.\dfrac{28}{9}=\dfrac{7}{36}\)
\(=>2^x=\dfrac{1}{16}\)
\(=>2^x=2^{-4}\)
\(=>x=-4\)