Cho các số tự nhiên: 1;2;3;4;5;...n (n lớn hơn hoặc bằng 19). Chia các số đó thành 2 nhóm tùy ý. Chứng minh rằng luôn chọn được từ mỗi nhóm một số sao cho hai số được chọn có ít nhất 1 chữ số giống nhau. Bài toán đúng không với n=18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M = { 9 ; 8 ; 7 ; 6 ; 5 ; 4 ; 3 ;...}
b) N = { 1010 ; 1011 ; 1012 ; 1013 ; 1014 ; 1015 ; 1016 ;...}
c) P = { 933 ; 930 ; 927 ; 924 ; 921 ; 918 ; 915 ;...}
d) Q = { 0,1 ; 0,2 ; 0,3 ; 0,4 ; 0,5 ; 0,6 ; ...}
e) R = { 10 ; 11; 12; 13; 14; 15 ; 16 ; 17 ; ...}
tk mình nha, mình kp vs bạn r đóa
Tích đó là: 1 x 2 x 3 x ….x 50. Ta thấy:
+ Nhóm 1 x 2 x 3 x ….x 9 có 1 số chẵn x 5 ( có 1 chữ số 0 tận cùng)
+ Nhóm 10 x 11 x 12 x ...x 19 có 10 và một số chẵn nhân với 15 ( có 2 chữ số 0 tận cùng)
+ Nhóm 20 x 21 x 22 x ...x 29 có 20 và 24 x 25 = 600 ( có 3 chữ số 0 tận cùng)
+ Nhóm 30 x 31 x 32 x ...x 39 có 30 và một số chẵn nhân với 35 ( có 2 chữ số 0 tận cùng)
+ Nhóm 40 x 41 x 42 x ...x 49 có 40 và một số chẵn nhân với 45 ( có 2 chữ số 0 tận cùng)
+ Số 50 nhân với một số chẵn có thêm 2 chữ số 0 tận cùng nữa.
Vậy có tất cả 12 chữ số 0 tận cùng
a) số phần tử là (99-11):2+1=45 (phần tử)
b)số phần tử là (999-111):2+1=445 (phần tử)
c) Các số tự nhiên chia hết cho 2,3,5 vậy nó chia hết cho 2x3x5=30 vậy số phần tử là(990-30):30+1=33
d)các số chia hết 3 ngưng ko chia hết 2 là các số lẻ chia hết 3, đầu tiên là 3 rồi đến chín rồi đến 15,.... chúng cách nhau 6 đơn vị vậy số phần tử là (999-3):6+1=167
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
(2x + 1) . (y - 5)=12 ta có 2x+1 và y-5 phải là ước của 12 sẽ là -12;-6;-4;-3;-2;-1;1;2;3;4;6;12 ta có :
2x+1=1 tương đương x=0 thì y-5=12 tương đương y=17
2x+1=2 tương đương x=1/2 thi y-5=6 tương đương y=11
2x+1=3 tương đương x=1 thì y-5=4 tương đương y=9
2x+1=4 tương đương x=3/2 thì y-5=3 tương đương y=8
2x+1=6 tương đương x=5/2 thì y-5=2 tương đương y=7
2x+1=12 tương đương x=11/2 thì y-5=1 tương đương y=6
2x+1=-1 tương đương x=-1 thì y-5=-12 tương đương y=-7
2x+1=-2 tương đương x=-3/2 thì y-5=-6 tương đương y=-1
2x+1=-3 tương đương x=-2 thì y-5=-4 tương đương y=1
2x+1=-4 tương đương x=-5/2 thì y-5=-3 tương đương y=2
2x+1=-6 tương đương x=-7/2 thì y-5=-2 tương đương y=3
2x+1=-12 tương đương x=-13/2 thì y-5=-1 tương đương y=4
những cặp x,y nào không phải số tự nhiên ta loại
vậy có 2 cặp số x,y thỏa mãn là :
x=0;y=17
x=1;y=9
TICK CHO MINH
Để chứng minh rằng luôn chọn được từ mỗi nhóm một số sao cho hai số được chọn có ít nhất 1 chữ số giống nhau, ta sẽ sử dụng nguyên lý "Ngăn chặn trực tiếp" (Pigeonhole principle).
Giả sử chúng ta chia các số từ 1 đến n thành hai nhóm tùy ý, mỗi nhóm chứa một nửa số. Vì n lớn hơn hoặc bằng 19, chúng ta có ít nhất 10 số trong mỗi nhóm.
Xét các chữ số hàng đơn vị của các số từ 1 đến n. Chúng ta có 10 chữ số hàng đơn vị khác nhau từ 0 đến 9. Vì vậy, trong mỗi nhóm, chắc chắn sẽ có ít nhất một số có chữ số hàng đơn vị giống nhau.
Do đó, luôn chọn được từ mỗi nhóm một số sao cho hai số được chọn có ít nhất 1 chữ số giống nhau.
Tuy nhiên, bài toán không đúng với n = 18. Khi n = 18, chúng ta có thể chia các số từ 1 đến 18 thành hai nhóm sao cho mỗi nhóm không có số nào có chữ số hàng đơn vị giống nhau. Ví dụ: nhóm 1 chứa các số 1, 2, 3, 4, 5, 6, 7, 8, 9 và nhóm 2 chứa các số 10, 11, 12, 13, 14, 15, 16, 17, 18.
Mình cảm ơn bạn nhiều!