So sánh
\(\frac{3}{\frac{9}{11}}\); \(\frac{\frac{3}{9}}{11}\);\(\frac{3}{9+11}\)và\(\frac{3}{9\times11}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
Đặt A= \(\frac{3^{10}+1}{3^9+1}\) đặt B= \(\frac{3^{11}+1}{3^{10}+1}\)
Vì B<1 => B< \(\frac{3^{11}+1+2}{3^{10}+1+2}\) = \(\frac{3^{11}+3}{3^{10}+3}\) = \(\frac{3\cdot\left(3^{10}+1\right)}{3\cdot\left(3^9+1\right)}\) = \(\frac{3^{10}+1}{3^9+1}\) = A
Vậy B<A
Ta có :
\(\frac{3^{11}+1}{3^{10}+1}>1\) nên \(\frac{3^{11}+1}{3^{10}+1}>\frac{3^{11}+1+2}{3^{10}+1+2}=\frac{3^{11}+3}{3^{10}+3}=\frac{3\left(3^{10}+1\right)}{3\left(3^9+1\right)}=\frac{3^{10}+1}{3^9+1}\)
Vậy \(\frac{3^{11}+1}{3^{10}+1}>\frac{3^{10}+1}{3^9+1}\)
\(\left(\frac{9}{11}-0,81\right)^{2005}=\left(\frac{9}{1100}\right)^{2005}=0,00\left(81\right)^{2005}\)
\(\frac{1}{10^{4010}}=\frac{1}{100^{2005}}=\left(\frac{1}{100}\right)^{2005}=0,01^{2005}\)
Vì 0,00(81)<0,01 nên \(\left(\frac{9}{11}-0,81\right)^{2005}< \frac{1}{10^{4010}}\)
\(\frac{3}{\frac{9}{11}}>\frac{\frac{3}{9}}{11}>\frac{3}{9+11}>\frac{3}{9\times11}\).