Cho tam giác ABC, M nằm trog tam giác. Vẽ ME vuông góc AB, MF vuông góc BC, MD vuông góc AC. Chứng minh rằng: AE^2 + BF^2 + CD^2 = BE^2 + FC^2 + AD^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải giùm mình nha mấy bạn...Khỏi cần vẽ hình...Hình mình tự vẽ đc rồi....Thanks ai comment trả lời câu hỏi này
Sao không bạn nào trả lời giúp mình hết vậy nhỉ?
#ttt lại xíu đii
BẠN TỰ VẼ HÌNH NHA
Giải
Gọi cạnh tam giác đều ABC la a, chiều cao là h.Ta có:
a) Ta có Stam giác BMC+Stam giác CMA+Stam giác AMB =Stam giác ABC
<=>(1/2)ax+(1/2)ay+(1/2)az=(1/2)ah <=> (1/2)a.(x+y+z)=(1/2)ah
<=>x+y+z=h không phụ thuộc vào vị trí của điểm M
b) x2+y2\(\ge\)2xy ; y2+z2\(\ge\)2yz ; z2+x2\(\ge\)2zx
=>2.(x2+y2+z2) \(\ge\)2xy+2xz+2yz
=>3.(x2+y2+z2) \(\ge\)x2+y2+z2+2xy+2xz+2yz
=>x2+y2+z2 \(\ge\)(x+y+z)2/3=h2/3 không đổi
Dấu "=" xảy ra khi x=y=z
Vậy để x2 + y2 + z2 đạt giá trị nhỏ nhất thì M là giao điểm của 3 đường phân giác của tam giác ABC hay M là tâm của tam giác ABC
\(a.\)Ta có: \(S_{\Delta BMC}=\frac{BC.x}{2}\)\(\Rightarrow\)\(x=\frac{2.S_{\Delta MBC}}{BC}\)
\(S_{\Delta BMA}=\frac{BA.z}{2}\)\(\Rightarrow\)\(z=\frac{2.S_{\Delta BMA}}{AB}\)
\(S_{\Delta AMC}=\frac{AC.y}{2}\)\(\Rightarrow\)\(y=\frac{2.S_{\Delta AMC}}{AC}\)
mà \(\Delta ABC\) đều nên AB = BC = CA
suy ra \(x+y+z=\frac{2\left(S_{\Delta AMC}+S_{\Delta BMA}+S_{\Delta BMC}\right)}{AB}\)
suy ra đpcm
định lí các nô
bạn tự vẽ hình nha
trong tam giác vuông AEM có \(AE^2=AM^2-EM^2\)
trong tam giac vuong BMF co \(BF^2=BM^2-MF^2\)
trong tam giác vuông MDC có \(CD^2=MC^2-MD^2\)
SUY RA \(AE^2+BF^2+CD^2=AM^2+BM^2+MC^2-EM^2-MF^2-MD^2\)
tương tư \(BE^2=BM^2-EM^2,FC^2=MC^2-MF^2,AD^2=AM^2-MD^2\)
SUY RA \(BE^2+FC^2+AD^2=AM^2+BM^2+MC^2-EM^2-MF^2-MD^2\)
SUY RA DPCM