\(Xx\frac{3}{4}xX-Xx\frac{1}{3}=\frac{8}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(lim\left(50.\dfrac{1-\left(\dfrac{4}{5}\right)^n}{1-\dfrac{4}{5}}+\dfrac{4}{5}.50.\dfrac{1-\left(\dfrac{4}{5}\right)^{n-1}}{1-\dfrac{4}{5}}\right)\) \(=50.\dfrac{1}{\dfrac{1}{5}}+\dfrac{4}{5}.50.\dfrac{1}{\dfrac{1}{5}}=450\)
\(x\cdot\frac{1}{2}\cdot\frac{1}{3}=\frac{3}{4}\\ x\cdot\frac{1}{6}=\frac{3}{4}\\ x=\frac{3}{4}:\frac{1}{6}\\ x=\frac{9}{2}\)
Vậy.....
\(x\times\frac{1}{2}\times\frac{1}{3}=\frac{3}{4}\)
\(x=\frac{3}{4}\div\frac{1}{3}\div\frac{1}{2}\)
\(x=\frac{9}{2}\)
Ta có:
\(\frac{1}{3.4}.x+\frac{1}{4.5}.x+...+\frac{1}{49.50}.x=1\)
\(\Rightarrow x.\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)=1\)
\(\Rightarrow x.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)
\(\Rightarrow x.\left(\frac{1}{3}-\frac{1}{50}\right)=1\Leftrightarrow x.\frac{47}{150}=1\)
\(\Rightarrow x=1:\frac{47}{150}\Leftrightarrow x=\frac{150}{47}\)
\(\frac{1}{2}.x-\frac{3}{4}=\frac{5}{6}\)
\(\frac{1}{2}.x=\frac{5}{6}+\frac{3}{4}\)
\(\frac{1}{2}.x=\frac{19}{12}\)
\(x=\frac{19}{12}:\frac{1}{2}\)
\(x=\frac{19}{6}\)
Vậy \(x=\frac{19}{6}\)
\(\left(\frac{3}{4}\cdot x\right):\frac{1}{2}=\frac{4}{5}\)
\(\frac{3}{4}\cdot x=\frac{4}{5}\cdot\frac{1}{2}\)
\(\frac{3}{4}\cdot x=\frac{2}{5}\)
\(x=\frac{2}{5}:\frac{3}{4}\)
\(x=\frac{8}{15}\)
\(\left(\frac{3}{4}x\right):\frac{1}{2}=\frac{4}{5}\)
=>\(\frac{3}{4}x=\frac{4}{5}.\frac{1}{2}\)
=>\(\frac{3}{4}x=\frac{2}{5}\)
=>\(x=\frac{2}{5}:\frac{3}{4}\)
=>\(x=\frac{8}{15}\)
\(\left(\frac{3}{4}.x\right)=\frac{4}{5}.\frac{1}{2}\)
\(\left(\frac{3}{4}.x\right)=\frac{2}{5}\)
\(\Rightarrow x=\frac{2}{5}:\frac{3}{4}=\frac{8}{15}\)
k nha