Cho tam giác ABC có D, M, E theo thứ tự là trung điểm của AB, BC, AC. Chứng minh:
a/ Tứ giác ADME là hình bình hành.
b/ Tam giác ABC có điều kiện gì thì tứ giác AMDE là hình chữ nhật.
CỨU MK ĐI!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
D là trung điểm của AB
M là trung điểm của BC
Do đó: DM là đường trung bình
=>DM//AE và DM=AE
hay ADME là hình bình hành
a: Xét ΔCAB có
M,E lần lượt là trung điểm của CB,CA
=>ME là đường trung bình
=>ME//AB và ME=AB/2
mà AD=AB/2
nên ME=AD
Xét tứ giác AEMD có
ME//AD
ME=AD
=>AEMD là hình bình hành
b: Để ADME là hình chữ nhật thì góc A=90 độ
a: Xét ΔABC có
M là trung điểm của BC
E là trung điểm của AC
Do đó: ME là đường trung bình của ΔABC
Suy ra: ME//AD và ME=AD
hay ADME là hình bình hành
Hình tự vẽ nha.
a)
+ Xét\(\Delta\)ABC có M là trung điểm của BC
E là trung điểm của AC
=> ME là đường trung bình của\(\Delta\)ABC
=> ME // AB
Cmtt: DM // AC
+ Xét tứ giác ADME có ME // AD (do ME // AB, D thuộc AB)
DM // AE (do DM // AC, E thuộc AC)
=> ADME là hình bình hành (dhnb)
Vậy ADME là hình bình hành.
b)
Có ADME là hình bình hành
Để tứ giác ADME là hình chữ nhật
<=>\(\widehat{DAE}=90^0\)
<=>\(\widehat{BAC}=90^0\)
<=>\(\Delta\)ABC vuông tại A
Vậy để ADME là hình chữ nhật thì \(\Delta\)ABC vuông tại A.
a: Xét ΔBAC có
D,M lần lượt là trung điểm của BA,BC
=>DM là đường trung bình của ΔBCA
=>DM//AC và \(DM=\dfrac{AC}{2}\)
DM//AC
E\(\in\)AC
Do đó: DM//AE
DM=AC/2
\(AE=\dfrac{AC}{2}\)
Do đó: DM=AE
Xét tứ giác ADME có
DM//AE
DM=AE
Do đó: ADME là hình bình hành
b: Để hình bình hành ADME trở thành hình chữ nhật thì \(\widehat{DAE}=90^0\)
=>\(\widehat{BAC}=90^0\)
c: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{BC}{2}\)
=>DE//HM
ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=AE\)
mà AE=DM(cmt)
nên HE=DM
Xét tứ giác DHME có DE//HM
nên DHME là hình thang
Hình thang DHME có DM=HE
nên DHME là hình thang cân